Processing Your XML/TEI with the XML Family of Languages

Elisa Beshero-Bondar and David J. Birnbaum

DHSI 2025: Week 1 (May 26-30, 2025 Coursepack contents

WO 00 L= L TP 1
B. ADOUL thiS COUTSE.uuimmimiiiisnisssssss s s sssssssssnsanes 3
C. SYIADUS (2024-2025)cumciceersiserssssessesssssessssssssssssssssssssssssssssssssesseesesesssseses 5
D. Resources (bibliography and lNKS) ...t ssssssssssssssssssssssssssssssssssessens 8
E. Exercises and tUtOrials (1iINKS) ..ottt sssssssse s s sessans 10
F. XPath
1. What can XPath do fOr M7 .. sssssssssssssssssssssssssssssssasess 11
2. The XPath functions We USE MOST.....cmemnesessens 21
G. Regular expressions (regex)
1. Autotagging with regular eXpreSSions (TEZEX).....crrnemesrssssssssssssssssssssesssssssssssssessens 25
H. XSLT
1. INtroduction £0 XSLT .sesssaess 33
2. Attribute value temMPlates (AVT) et sss e s s sessssssss s ssssssssssssesssses 41
3. The XSLT identity transformation
P TR 1D o) i - | PP 45
D EXEICISE oivuitsetssesssssessessssssssssssssssssssssssss s s s ssss s s s s ssss s ssns s ssssssnsssnssnssnns 49
4. MOAAl XSLT outiereerersessnssssssssssssssnssssssnssnns 52
5. XSLT, part 2: advancCed fEATUIES ...t teesesse e ssnes 55
6. USing <xXSL:analyZe-StITNE> ...t sss s ssss e s sss s sss s sss s s sesssssssssssenses 63
[. Schematron
1. Guide to schema writing with SChematron ... eeseees 66
2. Validating references with SCheMaAtION.......ccceecececcc e seees 69
3. Coding with unique identifiers and SchematroN........ e 73
J. What's new in XSLT 3.0 and XPath 3.1 oot srsssss s ssssssss s ssssssanes 76
K. Obdurodon exercises and tests
1. Regular eXPreSSiONS (TEZEX) ... resenessssssssssssessssssssessssssssssssesssssssssssssssssssssssssssssssssssassssssns 81
D € o 1o P 95
TR (01 =) o/ 103
D)) PO 108
Y 0 =) 0= 1 0) o PP 129
L. Newtfire exercises and tests
1. Regular eXPreSSiONS (TEZEX) ... renesrssrssseseesssens 134
D € o 1o PPN 136
TR (01 =) o/ 144
D)) P PSPPSR 147

RS JINYo] 1) 010 = 1) o PO PP 163
M. Mulberry guides and quick references
1. Guide to using the Oxygen XML EditOr (V20.0) . creereceereesseeseseessessssssessesssssssssesessns 176
2. XQuery 1.0 and XPath 2.0 functions and operators quick reference.........ueeeeeeneen. 189
3. Regular expressions in XSLT 2.0, XQuery 1.0 and XPath 2.0 quick reference............ 191
4. 1SO Schematron qQUICK FefEIENCE ...ttt sss s s sssssessssssssssasessssans 193
5. XPath 2.0 QUICK FEIEIEICE ...ttt sss e sss s st ss s sssssssss s sasssssenen 195
6. XQUETY 1.0 QUICK FEIEIEINCE ..ottt s sss st s s snsas 197
7. XSLT 2.0 QUICK FEfEIEINCE. ..ttt s e s s sss s s s snen 199

N. Supplemental readings
1. XQuery (Priscilla Walmsley; SAMPIE) ...ccueeeeeeeeeeseeeseeseeeseessesssesssesssseesssssssesssssssssssssssssessnes 202
2. XPath 2.0 and XSLT 2.0 programmer’s reference (Michael Kay; table of contents) ..232

Processing Your XML/TEI with the XML
Family of Languages

Course description Syllabus Resources and references Course Pack View on GitHub

Instructors: Elisa Beshero-Bondar and David J. Birnbaum

Description:

Learn XPath intensively and gain superpowers with XML processing! Whether you’ve recently learned XML
and want to build something with it, or whether you’ve worked with XPath before but are rusty, new and
experienced coders alike will benefit from our course. XPath is usually not the center of a DHSI class, and
people often gain hasty “ad hoc” experience with it when learning it only along the way to doing something
else. Concentrating intensively for a week on XPath will “power up” what you can do with XML, and will help
you refine the way you code your documents. Our course will assist XML coders (whether beginners or
experienced) with complex processing of information from markup and from plain text. Our goals are 1) to
increase our participants’ confidence and fluency in reading and extracting information coded in XML archives
and databases, and 2) to share strategies for systematically reviewing, designing, and building those archives
and databases.

Because we can “dig” latent information out of the document “strata” of texts, we think of working with XPath
as something like planning an archaeology project, turning an XML project into a carefully managed digital dig
site for cultural data! In our course you’ll gain experience with writing precise and powerful XPath to illuminate
information that isn’t obvious on a human reading. For example, we’ll write XPath to calculate how frequently
you have marked a certain phenomenon, or locate which names of persons are mentioned together in the same
chapter, paragraph, sentence, stanza, footnote, or other structural unit. We’ll apply XPath to check for accuracy
of text encoding—to write schema rules to manage your coding (or your project team’s coding). You will learn
how XPath can help you to pull data from your documents into lists, tables, and graphic visualizations.

XPath is the center of the course, but we will explore how it applies in multiple XML processing contexts so
that you learn how these work similarly and how these are used, respectively, to validate documents and to
transform them for publication and other reuse. Thus we devote serious, sustained attention to writing and
applying XPath by surveying how it is expressed in a variety of frameworks (including XSLT, XQuery, and
Schematron), with a variety of materials (including XML and plain-text documents), and involving a variety of
task types (such as date arithmetic to calculate how much time elapsed between dates and string surgery to look
for and manipulate patterns inside your coded elements). You’ll gain fluency with XPath expressions and
patterns, including predicates, operators, functions (from the core library and user-defined), regular expressions,
and other features, and we’ll practice these in different XML-related contexts, starting with XQuery, and
moving to XSLT and Schematron). Whether you are an XML beginner or a more experienced coder, you’ll find
that XPath will help you with systematic encoding, document processing, and project management.

lof2 4/15/24, 16:47

https://ebeshero.github.io/UpTransformation/dhsi-XPath_CourseDescription.html
https://ebeshero.github.io/UpTransformation/dhsi-XPath_CourseDescription.html
https://ebeshero.github.io/UpTransformation/schedule.html
https://ebeshero.github.io/UpTransformation/schedule.html
https://ebeshero.github.io/UpTransformation/References.html
https://ebeshero.github.io/UpTransformation/References.html
https://ebeshero.github.io/UpTransformation/coursepack/XPath_coursepak.pdf
https://ebeshero.github.io/UpTransformation/coursepack/XPath_coursepak.pdf
https://github.com/ebeshero/UpTransformation
https://github.com/ebeshero/UpTransformation

Instructors: Elisa Beshero-Bondar and David J. Birnbaum | Code the X-Files using the XML Family of Languages

4
This is a hands-on course. Consider this offering in complement with, and / or to be built on by: Text Encoding
Fundamentals and their Application, Out-of-the-Box Text Analysis for the Digital Humanities, Text Processing -
Techniques & Traditions, XML Applications for Historical and Literary Research. No advanced knowledge of
XML processing is necessary but those with interests in document processing who have taken Digital
Documentation and Imaging for Humanists; Advanced TEI Concepts / TEI Customization; A Collaborative
Approach to XSLT; or Geographical Information Systems in the Digital Humanities will certainly benefit.

UpTransformation is maintained by ebeshero.

2 of 2 4/15/24, 16:47

https://github.com/ebeshero/UpTransformation
https://github.com/ebeshero/UpTransformation
https://github.com/ebeshero
https://github.com/ebeshero

Schedule

Expand all | Collapse all

Monday: XPath

Introduction to XPath in eXist-db and <oXygen/> (10:30 a.m.-
12:00 p.m.)

A. Getting started with XPath and eXide (15 minutes; 10:30 a.m.—10:45 a.m.) Expand I Collapse
B. Simple XPath expressions (25 minutes; 10:45 a.m.~11:10 a.m.) Expand I Collapse

C. XPath in <oXygen/> (15 minutes; 11:10 a.m.—11:25 a.m.) Expand | Collapse

D. XPath path expressions (15 minutes; 11:25 a.m.—11:40 a.m.) Expand | Collapse

E. XPath path steps (20 minutes; 11:40 a.m.—12:00 p.m.) Expand I Collapse

Exploring document structures and data with XPath (1:00 p.m.-2:30
p.m.)

A. XPath functions for strings (25 minutes; 1:00 p.m.—1:25 p.m.) Expand I Collapse

B. XPath functions for numbers and for sequences of numbers (20 minutes; 1:25 p.m.—1:45 p.m.)
Expand I Collapse

C. XPath functions for sequences (15 minutes; 1:45 p.m.—2:00 p.m.) Expand I Collapse

D. Looking Stuff Up: XPath function signatures and cardinality (10 minutes; 2:00 p.m.—2:10 p.m.)
Expand [Collapse

E. XPath predicates (20 minutes; 2:10 p.m.—2:30 p.m.) Expand I Collapse

Tuesday: XPath and XQuery From XPath to XQuery
(9:00 a.m.-12:00 p.m.)

A. Working with sequences (15 minutes; 9:00 a.m.—9:15 a.m.) Expand I Collapse
B. Read and evaluate XML projects with XPath (30 minutes; 9:15 a.m.—9:45 a.m.) Expand | Collapse
C. Housekeeping: documents, collections, and namespaces (10 minutes; 9:45 a.m.—9:55 a.m.)
Expand I Collapse
D. The seven types of nodes (20 minutes; 9:55 a.m.—10:15 a.m.) Expand | Collapse

E. Break (15 minutes; 10:15 a.m.—10:30 a.m.)

https://ebeshero.github.io/UpTransformation/dhsi-XPath_CourseDescription.html
https://ebeshero.github.io/UpTransformation/schedule.html
https://ebeshero.github.io/UpTransformation/References.html
https://ebeshero.github.io/UpTransformation/coursepack/XPath_coursepak.pdf
https://github.com/ebeshero/UpTransformation

F. Scavenger hunt 1 (20 minutes; 10:30 a.m.—10:50 a.m.) I 6
G. Wildcard node testing (15 minutes; 10:50 a.m.—11:05 a.m.) I
H. Regex in XPath (30 minutes; 11:05 a.m.—11:35 a.m.) I

I. Introducing variables (15 minutes; 11:35 a.m.—11:50 a.m.) |

J. Introducing FLWOR (10 minutes; 11:50 a.m.—12:00 p.m.) I

XQuery flow control (1:00 p.m.-4:00 p.m.)

A. Introducing FLWOR, continued. (20 minutes; 1:00 p.m.—1:20 p.m.) I

B. Scavenger hunt 2: in XQuery this time. (30 minutes; 1:20 p.m.—1:50 p.m.) I

C. XPath for expressions; sequence and range variables (<oXygen/>) (15 minutes; 1:50 p.m.—2:05 p.m.)
I

D. FLWOR statements in XQuery: how for works: Part 1 (25 minutes; 2:05 p.m.—2:30 p.m.)
I

E. Break (15 minutes; 2:30 p.m.—2:45 p.m.)

F. FLWOR statements in XQuery: how for works: Part 2 (30 minutes; 2:45 p.m.—3:15 p.m.)
I

G. E7 Putting it all together: writing FLWORsS to make new files (45 minutes; 3:15 p.m.~4:00 p.m.)
I

Wednesday: XPath and XSLT
Introduction to XPath in XSLT (9:00 a.m.-12:00 p.m.)

A. Preparation for writing XSLT in <oXygen> (20 minutes; 9:00 a.m.—9:20 a.m.) I

B. XSLT overview in <oXygen/> (15 minutes; 9:20 a.m.—9:35 a.m.) I

C. Housekeeping: up to three namespaces (15 minutes; 9:35 a.m.—9:50 a.m.) I

D. Housekeeping: <xsl:output> (15 minutes; 9:50 a.m.—10:05 a.m.) I

E. XSLT and templates, part 1 (10 minutes; 10:05 a.m.—10:15 a.m.) I

F. Break (15 minutes; 10:15 a.m.—10:30 a.m.)

G. Identity transformation for making changes to an XML file (50 minutes; 10:30 a.m.—11:20 a.m.)
I

H. Comparing XSLT and XQuery (15 minutes; 11:20 a.m.—11:35 a.m.) I

I. Preparing XSLT to output HTML from TEI XML (25 minutes; 11:35 a.m.—12:00 p.m.)

I

XSLT Activity (1:00 p.m.—4:00 p.m.)

A.TEI XML to HTML transformation (90 minutes; 1:00 p.m.—2:30 p.m.) I
B. Break (15 minutes; 2:30 p.m.—2:45 p.m.)
C. XSLT activity: Making a linked table of contents (75 minutes; 2:45 p.m.—4:00 p.m.)

I

Thursday: XPath and Schematron

Using Schematron to constrain your markup (9:00 a.m.-12:00 p.m.)

A. Schematron overview (15 minutes; 9:00 a.m.—9:15 a.m.) I
B. Looking at Schematron (25 minutes; 9:15 a.m.—9:40 a.m.) [
C. Schematron error reporting (15 minutes; 9:40 a.m.—9:55 a.m.) I

D. XPath functions practice: Leipzig glossing rules, part 1 (20 minutes; 9:55 a.m.—10:15 a.m.)
I

E. Break (15 minutes; 10:15 a.m.—10:30 a.m.)

F. XPath functions practice: Leipzig glossing rules, part 2 (40 minutes; 10:30 a.m.—11:10 a.m.)
I

G. The Three Stooges go to Schematron Summer Camp (30 minutes; 11:10 a.m.—11:40 a.m.)
I

H. One more way of counting spaces and hyphens (20 minutes; 11:40 a.m.—12:00 p.m.)
I

Schematron and external files (1:00 p.m.-4:00 p.m.)

A. ID/IDREEF validation (25 minutes; 1:00 p.m.—1:25 p.m.) I

B. General comparison and value comparison (20 minutes; 1:25 p.m.—1:45 p.m.)
C. Schematron validation (25 minutes; 1:45 p.m.—2:10 p.m.) I

D. Exploring Digital Mitford (20 minutes; 2:10 p.m.—2:30 p.m.) I
E. Break (15 minutes; 2:30 p.m.—2:45 p.m.)

F. Hamilton 1823-04-09 letter (35 minutes; 2:45 p.m.—3:20 p.m.) I
G. Webb 1819-05-16 letter (40 minutes; 3:20 p.m.—4:00 p.m.) |

Friday: Taking stock
Putting it all to work (9:00 a.m.-10:15 a.m.)

A. Hands on activity with participant data TBA (60 minutes; 9:00 a.m.—10:00 a.m.)
B. Retrospective (15 minutes; 10:00 a.m.—10:15 a.m.)

UpTransformation is maintained by ebeshero.

https://github.com/ebeshero/UpTransformation
https://github.com/ebeshero

XPath for Document Archaeology and Profect
Management

XPath for Document Archaeology and Project
Management: References

Specifications

e XPath: XML Path Language (XPath) 3.1. W3C Recommendation 21 March 2017

e XQuery: XQuery 3.1: An XML Query Language. W3C Recommendation 21 March 2017

e XPath and XQuery functions and operators: XPath and XQuery Functions and Operators 3.1.
W3C Recommendation 21 March 2017

e XSLT: XSL Transformations (XSLT) Version 3.0. W3C Recommendation 8 June 2017

e Schematron: ISO Schematron, 2016 edition

Books and links

Our own teaching materials are available at Obdurodon and Newtfire.

XPath

There are no XPath-specific reference books, but XPath is discussed in the books about XQuery and
XSLT listed below. XPath functions through version 3.1 are documented on line in the Function
library section of the documentation for Saxon. The Mulberry Technologies XPath 2.0 Quick
Reference and XQuery 1.0 and XPath 2.0 Functions and Operators Quick Reference by Sam Wilmott
are excellent, but they do not include more recent features.

https://github.com/ebeshero/UpTransformation
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xquery-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-functions-31-20170321/
https://www.w3.org/TR/2017/REC-xslt-30-20170608/
http://schematron.com/
http://dh.obdurodon.org/
http://dh.newtfire.org/
https://www.saxonica.com/documentation/index.html#!functions
http://www.saxonica.com/documentation/documentation.xml
http://mulberrytech.com/quickref/xpath2.pdf
http://mulberrytech.com/quickref/functions.pdf

XQuery

The only XQuery book you need is Priscilla Walmsley, XQuery, 2nd edition, 2015, O'Reilly Media, Inc.
It contains documentation of both XPath functions used in XQuery and XQuery itself. The Mulberry
Technologies XQuery 1.0 Quick Reference and XQuery 1.0 and XPath 2.0 Functions and Operators
Quick Reference by Sam Wilmott are excellent, but they do not include more recent features.

XSLT

The best XSLT reference book is Michael Kay, XSLT 2.0 and XPath 2.0 Programmer’s Reference, 4th
edition, 2008, Wrox, but it has not been updated for XPath 3.1 or XSLT 3.0. There are no XSLT 3.0
reference books, but XSLT 3.0 elements are documented on line in the XSLT elements section of the
documentation for Saxon. The Mulberry Technologies XSLT 2.0 Quick Reference by Sam Wilmott is
excellent, but it does not include more recent features.

Schematron

There are no Schematron books, but for a good Schematron tutorial on line see Mulberry
Technologies' Introduction to Schematron, by Wendell Piez and Debbie Lapeyre. See also the
Mulberry Technologies ISO Schematron Quick Reference, by Sam Wilmott.

UpTransformation is maintained by ebeshero.
This page was generated by GitHub Pages.

http://mulberrytech.com/quickref/xquery1.pdf
http://mulberrytech.com/quickref/functions.pdf
https://www.saxonica.com/documentation/index.html#!xsl-elements
http://www.saxonica.com/documentation/documentation.xml
http://mulberrytech.com/quickref/xslt2.pdf
http://www.mulberrytech.com/papers/schematron-Philly.pdf
http://mulberrytech.com/quickref/schematron_rev1.pdf
https://github.com/ebeshero/UpTransformation
https://github.com/ebeshero
https://pages.github.com/

XPath for Document Archaeology and Pro}ect
Management

Exercises and Tutorials

Here is a partial list of exercises and tutorials (in addition to those included in full in this course
pack) that we may use and adapt in DHSI week. This list will grow. If you are viewing this from the
DHSI coursepak, visit this page on the class GitHub Repository at
https://ebeshero.github.io/UpTransformation/Exercises.html.

e XQuery and eXist-db Tutorial for Newtfire: http://dh.newtfire.org/explainXQuery.html
e XSLT to HTML for a play: http://dh.obdurodon.org/xslt-test_instructions.xhtml
Full Complement of Exercises on Obdurodon and Newtfire:

e Obdurodon: http://dh.obdurodon.org/
e Newtfire: http://dh.newtfire.org/

Class GitHub Repository for Up to Date Course Materials and Exercises:
https://ebeshero.github.io/UpTransformation/

UpTransformation is maintained by ebeshero.
This page was generated by GitHub Pages.

https://github.com/ebeshero/UpTransformation
https://ebeshero.github.io/UpTransformation/Exercises.html
http://dh.newtfire.org/explainXQuery.html
http://dh.obdurodon.org/xslt-test_instructions.xhtml
http://dh.obdurodon.org/
http://dh.obdurodon.org/
https://ebeshero.github.io/UpTransformation/
https://github.com/ebeshero/UpTransformation
https://github.com/ebeshero
https://pages.github.com/

11

<00>—-<dh> Digital humanities

Maintained by: David J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-02-17T18:26:04+0000

What can XPath do for me?

Contents

¢ Introduction

* Node

e Sequence

e XPath components

e Paths

* Axes

¢ Predicates

¢ Functions

¢ Review of terms and symbols

Introduction

As we discussed in our general introduction to XML (What is XML and why should humanities scholars care?), there are two principal sets
of reasons why digital humanists use XML to model their texts:

1. XML is a formal model designed to represent an ordered hierarchy, and to the extent that human documents are logically ordered
and hierarchical, they can be formalized and represented easily as XML documents.

2. Computers can operate very quickly and efficiently on trees (ordered hierarchies), much more quickly and efficiently than they can
on non-hierarchical text. This means that if we can model the documents we need to study as trees, we can manage and manipulate
large amounts of data in a shorter time, and using fewer computer resources.

XPath is a language for selecting parts of an XML document for subsequent processing. As such, the main thing an XPath expression does is
allow the user to describe, in a formal way that a computer can process easily, certain parts of a document (e.g, “all of the paragraphs”, “all
of the first paragraphs of a section, unless the section is part of an appendix”, etc.). In addition to defining specific parts of a document,
XPath can also manipulate the data it finds (see the discussion of functions below), but the main thing it does is serve as a helper
language, or ancillary technology, to identify parts of a document that will then be manipulated by another language. The principal XML-
related languages that employ XPath to find information in XML documents are XSLT (eXtensible Stylesheet Language Transformations)
and XQuery (XML Query language). We'll learn about using XSLT and XQuery to manipulate XML documents later, but before you can do
something with information in an XML document you have to be able to find it, and that's what XPath does.

This document provides some basic information about how to use XPath to describe, find, and navigate to information inside an XML
document. For the most part you won’t yet be doing anything with the information you find, but once you’ve learned how to find it, you’ll
employ that knowledge in subsequent lessons about XSLT and XQuery to interrogate and manipulate your source documents. The
introduction you're reading now is not a complete description of XPath, but it will get you started, and you can then find information
about additional XPath resources in Michael Kay’s book.

Node

The discussion of XPath components (path expressions, axes, predicates, functions) below depends on two key concepts, nodes and
sequences. A node is a piece of information in the XML tree, such as an element, an attribute, or a string of text. The XHTML paragraph that
you are reading now is a single <p> element node that contains a mixture of text nodes (strings of plain text), <code> element nodes
(used for snippets of XML, such as the element names “<q>" and “<code>", which are highlighted typographically by my style sheet), <q>
element nodes (identifying quoted text, which has quotation marks inserted automatically during rendering), etc. In this particular
example, each of the element nodes (<code>, <q>, etc.) within the <p> node happens to contain, in turn, just a single text node, but
elements can also contain just other element nodes, just text, a mixture of elements and text, or nothing at all. The <p> node, in turn, is
contained within a section (<diVv>) node, etc. This can be illustrated with the following partial tree diagram (element nodes are depicted
as yellow ovals and text nodes as blue rectangles):

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/what-is-xml.xhtml
http://www.obdurodon.org/
http://dh.obdurodon.org/

(v))
... the node names 0 and ° , which are ...

q code

This partial tree corresponds to the following text as it appears in the paragraph above (without the ellipsis points, which I've added):

..

“

. the node names and “code”, which are ..

q

——

__

These three perspectives (tree, rendering, XML serialization) all represent the same XML document. What XML (and, therefore XPath)
cares about is the tree. In XPath terms (look at the tree):

* The <p> node contains just five child nodes. In order, these are a text node (“the node names”), the first <q> node, another text node
(“and”), the second <> node, and a third text node (“, which are”).

¢ Each <g> node contains a single text node, “q” for the first and “code” for the second.

e The tree is hierarchical. A node that contains another node is called its parent, so that, for example, the one <p> node is the parent of
its five child nodes (text, the first <q>, more text, the second <>, and still more text) and each <> node is the parent of one text
node. Nodes that have the same parent, such as the five children of the <p> node, are called siblings of one another. The tree
diagram has been formatted to display siblings on the same level as one another, and the three text nodes directly under the <p>
node plus the two <g> nodes are siblings. The two text nodes contained by the two <q> nodes are descendants of the <p> node, but
not children. Although they are on the same level as each other, they aren’t siblings because they don’t share a parent. What we read
on the web page as continuous text is actually a mixture of text nodes and element nodes, and the elements nodes, in turn, contain
text nodes. The text may all appear continuous during rendering, but, as the tree shows, it lives at different levels of the hierarchy.

e The nodes of the tree are ordered. The child nodes of the <p> node, which are siblings of one another, occur in a particular order.
This is why XML can be described as representing an ordered hierarchy of content objects.

Sequence

The group of nodes that an XPath expression returns is a sequence, which is a technical term for an ordered collection of items that permits
duplicates. A sequence is not the same thing as a set because, according to the formal definition, the members of a set are unordered and
cannot contain duplicates. The students enrolled in this course constitute a set insofar as there are no duplicates (nobody can be enrolled
more than once) and they have no inherent order (one can organize them by height or alphabetically or in many other ways, but doing
that doesn’t change the identity of the set).

XPath components

XPath has four principal interrelated components, as follows (the examples are things one can do with each component, but they don’t
illustrate how to do those things, about which see below):

Component Purpose Examples

1. Find all <paragraph> elements in the tree.

2. Given a <chapter> elementin the tree, find all <footnote> elements inside it.

3. Given a <chapter> element in the tree, find all <footnote> elements inside it that
contain a <definition> element. This last expression requires a predicate, about
which see below.

path Describe the location of
expression |some nodes in a tree.

axis Describe the direction in
which one looks in the tree. 1. From a particular location in the tree, find all preceding <footnote> elements.

An axis is part of a path Because we're looking for preceding footnotes, the direction searched is batRwards or

expression. left.

2. From a particular <paragraph> element in the tree, find the <tit1le> element of
the <chapter> element that contains it. The direction searched is first upward in the
tree (to the containing <chapter> element) and then downward (to the <title>
element contained by that <chapter> element).

1. Find the first <paragraph> element in each <chapter> element. XPath does this
by finding all <paragraph> elements in each <chapter> element and then filtering

Filter the results of a path out the ones that are not the first in their cohort.

predicate : 2. Find all of the <paragraph> elements that contain <illustration> elements,
expression. . . , ,
ignoring the ones that don’t. You aren’t trying to retrieve the <illustration>
elements themselves; you're using them to filter the set of all <paragraph>
elements according to whether or not they contain <illustration> elements.
1. Retrieve all of the <paragraph> elements in a <chapter> element (so far this is
Do something with the just a path expression) but instead of returning the actual elements, return just a
function information retrieved from count of how many there are. This uses the count () function.
the document instead of 2. Retrieve a bunch of nodes that contain textual items (such as from a list) and
just returning it as received. concatenate their contents into a single string, inserting a comma and space after each

one except the last. This uses the string-join() function.

Each of these components is described in more detail below. (There are a few other types of XPath expressions that we don’t discuss here.
For example, 1 + 2 is an XPath expression that describes a sequence of one item, the integer “3”.)

Paths

Path expressions are used to navigate from a current location (called the context node) to other nodes in the tree. By default, specifying
the name of a node type in a path expression says to look for it among the children of the current context node. New steps in a path
expression are indicated with slash characters (note: not back-slashes), and the context node changes with each step. This will be clearer if
we walk step-by-step through some examples. Let’s assume below that we're dealing with a prose document that consists of chapters,
marked up as <chapter> elements, each of which contains one or more paragraphs, marked up as <paragraph> elements. The
paragraphs, in turn, contain a mixture of plain text and quotations, marked up as <quote> elements.

e The path expression quote means “collect all the <quote> child elements of the current context node.” If one launches this path
expression from within a <paragraph> element, it retrieves all of the <quote> elements immediately inside that <paragraph>
element, ignoring any others in the document. This means that it ignores <quote> elements outside the <paragraph> element
context node, and it also ignores <quote> elements that are inside other <quote> elements in the <paragraph> element, since
those more deeply-nested <quote> elements are not immediate children of the <paragraph?> (they are children of children).

* The path expression chapter/paragraph/quote means “starting from the current context node, find all of the <chapter>
elements that are its immediate children, then all of the <paragraph> elements that are children of those <chapter> elements,
and then all of the <quote> elements that are children of those <paragraph> elements.”

Only the items returned by the last step in the path are added to the sequence to be returned by the path expression. In the preceding
example, the system traverses <chapter> and <paragraph> elements on its way to find <quote> elements, but only the <quote>
elements themselves are part of the value of the path expression, that is, of the sequence that the expression returns. The expression visits
the other elements in passing, but it does not collect them.

Slashes indicate stages in the path and the context node changes at each stage. Initially the context is wherever one starts (I'll explain how
that’s determined when we talk about how XSLT and XQuery use XPath), so in this example we begin by finding all of the <chapter>
elements that are children of whatever element we’re in. Once we reach the first slash, the context node changes to the sequence of
<chapter> elements that we just retrieved at the first step, so we're now looking for <paragraph> elements that are children of those
<chapter> elements. Another slash changes the context node yet again, this time to the sequence of all <paragraph> elements
retrieved earlier, and we are now looking for <quote> elements that are children of those <paragraph> elements. Each step in the path
is really defining a sequence of context nodes for the next step, and it then sets each one in turn as the new context node as it moves along
the path.

By default, the steps in a path expression are the names of element nodes. It is also possible to address other types of nodes directly, such
as attributes and text nodes. This means that, for example, if all paragraphs are tagged with an attribute value describing their language
(e.g, <paragraph language="english"> ... </paragraph>), one could find all of the language information on paragraphs by
navigating to the paragraphs and then not to any element within them, but to the value of the @1 anguage attribute instead. Assuming
paragraphs are inside chapters, which are inside a root <novel> element, that path expression might look like
/novel/chapter/paragraph/@language.

See below for an explanation of the leading slash. As is also explained below, in XPath a leading at-sign (@) identifies an attributé, and we’ll
use one from now on when we talk about attributes in XPath, but the attribute name in the actual XML is written without the at-sign.

As stated, this path would not retrieve the paragraphs in a particular language; it would retrieve the @1 anguage attributes, the values of
which are the names of the languages. It is, of course, possible to retrieve all paragraphs (<p> elements) only if they are in English (for
example) instead, but that isn’t what this particular path expression does; this path expression retrieves the @Language attribute nodes
themselves.

Axes

By default a step in an XPath looks for an element that is a child of the current context node. As was noted above, it is possible to specify
other types of nodes than elements, and it is also possible to look for nodes that are not just children, but also, for example, parents or
siblings. XPath is capable of navigating from any context to any other location in the tree.

The direction in which XPath looks at each step in a path is determined by an axis, and by default we look for element nodes on the child
axis. The most important directional axes in XPath are:

e child: All nodes contained directly by the current context node.

e descendant: All nodes contained directly by the current context node, recursively, that is, all the way down the tree. In other
words, the descendants of a node are its children, its children’s children, etc.

e parent: The node that contains the current context node. Within the social metaphor of the XML family, children have only one
parent. The only node that does not have a parent is the node at the very top of the tree (above the root element), called the
document node.

e ancestor: The parent of the current context node, its parent node, etc., all the way up to the document node.

e preceding-sibling: All nodes that share a parent with the context node and precede it in document order. In the list you're
reading now, the preceding siblings of the current list item element are the other elements that precede it and have the same
parents, which means the other list items that precede it in this list, but not those that follow it and not those that may precede it
elsewhere in the document (since they have different parents).

e preceding: All nodes that precede the current context node in document order. This includes both preceding siblings and
preceding nodes that are not siblings. Note that preceding must be understood in terms of nodes in a tree, rather than tags in a
serialization. For this reason, ancestors are not preceding; although they begin before the current context (their start tag precedes
it), the node itself doesn’t precede the current context because it is still open. That is, the start tag precedes the current context, but
the element contains it, rather than preceding it, and XPath cares about elements, not tags.

e following-sibling: All nodes that share a parent with the context node and follow it in document order. The mirror image of
the preceding-sibling axis.

e following: All nodes that follow the current context node in document order, including both following siblings and following
nodes that are not siblings. The mirror image of the following axis.

These eight axes fully describe looking in any direction from the current context node (there is also a se 1 f axis, which stays at the
current context node, and a few others that also aren’t used much). There is no s1ib11ng axis; if you want all siblings, regardless of
direction, there are a couple of ways to express that, but there is no way to do so with just a single axis.

The axes can be categorized by direction (up, down, left, right) and distance (short, long), as follows:

Axis Direction | Distance
child down short
descendant down long
parent up short
ancestor up long
preceding-sibling | left short
preceding left long
following-sibling | right short
following right long

The division of the tree into these eight directional axes is illustrated by the following example:

15

[Image courtesy of Syd Bauman, Northeastern University]

In the preceding image, intended to reflect the tree view of an XML document, the shaded diamond in the middle represents the current
location, that is, the context node. The axes used to reach the other nodes are as follows:

Axes Depiction Nodes
child eD;;‘l;Sgreen The three nodes immediately below the current location
Dashed green | The three child nodes mentioned above, plus the seven nodes below them, all the way down (their
descendant | .. . A o oas
line children and their children’s children)
parent Magenta edges | The node immediately above the current location
Magenta . . ,
ancestor dashed line The parent plus its parent, and its parent’s parent
Sifliﬁgmg- Dark red edges | The two nodes to the left of the current location that have the same parent
. Dark red . s . . .
preceding dashed line The preceding-sibling nodes plus the six other nodes that are entirely to the left of the current location
Z(i)ll)ll(i)r‘;\gng- Blue edges The node to the right of the current location that has the same parent
following Eiluee dashed The following-sibling node plus the nine other nodes that entirely to the right of the current location

A step in a path expression actually contains not just the name of an element type (or other node specifier; one can specify things other
than elements), but also an axis. We often don’t think about the axis because when no axis is specified explicitly, a default ch1i1d axis is
assumed, but the chi 1d axis is present, even if only implicitly, when no explicit axis is specified.

An axis is specified by taking its name followed by a double colon and prepending it to the element name (or other path step). Hr
example, a path paragraph looks for <paragraph> elements on the child axis, while preceding-sibling: :paragraph looks
instead for <paragraph> elements that are preceding siblings. This means that paragraph as a step in a path by itself is short-hand for
child: :paragraph. Usually nobody specifies the child axis, since it’s implicit when it isn’t stated.

In addition to specifying the name of a specific element, one can look for any and all elements on an axis by using an asterisk (*). For
example, the path paragraph/* means “find all the child <paragraph> elements of the current context and then find all of the child
elements of those <paragraph> elements, regardless of element type.” The asterisk can be used on other axes, as well, so that
preceding-sibling: : * means “starting at the current context node, find all preceding sibling elements, regardless of element type.”

The notation single dot (.) refers to the current context, and is equivalent to sel1f: : ¥, that is, all of the nodes on the self axis, which is
the one current context element, whatever it is. The notation double dot (. .) refers to the one parent node, whatever it is, and is
equivalent to parent: : *.

A slash (/) normally indicates a step in a path expression, telling the system to look for whatever follows with reference to the current
context. This means that, for example, paragraph/quote means “find all of the <paragraph> elements that are children of the
current context and then (slash = new step in the path) all of the <quote> elements that are children of each of those <paragraph>
elements.” A slash at the very beginning of a path expression, though, has a special meaning: it means “start at the document node, at the
top of the tree.” Thus, /paragraph means “find all of the <paragraph> elements that are immediate children of the document node,” a
query that will succeed only if the root element of the document (the one that contains all other elements) happens to be a
<paragraph> (and therefore immediately under the document node).

A double slash (//) is shorthand for the descendant axis, so that chapter//quote would first find all of the <chapter> elements
that are children of the current context and then find all of the <quote> elements anywhere within them, at any depth (children,
children’s children, etc.). When used at the beginning of a path expression, e.g,, //paragraph//quote, the double slash means that the
path starts from the document node, at the top of the tree, and looks on the descendant axis. The preceding XPath expression therefore
means “starting from the document node, find all descendant <paragraph> elements (= all <paragraph> elements anywhere in the
document), and then find all <quote> elements anywhere inside those <paragraph> elements.” This is one way to find all <quote>
elements anywhere inside <paragraph> elements at any depth, while ignoring <quote> elements that are not inside <paragraph>
elements.

Attributes are not children and are not located on the ch1i1d axis. Instead, they are located on their own attribute axis. The attribute
axis can be specified as attribute: :, butitis usually abbreviated as an at sign (@). For example, the path expression
paragraph/@language, which is short for child: :paragraph/attribute::language, starts at the current context, finds all of
the <paragraph> elements on the child axis, and then finds the @Language attribute on each <paragraph> element. Ifa
<paragraph> element doesn’t happen to contain a @1 anguage attribute, nothing is added to the sequence for that particular
<paragraph>. Curiously, although attributes are not children (they are not located on the ch1i1d axis), they do have parents, which are
the elements to which they’re attached. This means that in the preceding example, although the @1anguage attribute is not a child of the
<paragraph> element (because attributes by definition are not children, they are located on the attribute axis, rather than the
child axis), the <paragraph> element is nonetheless a parent of the attribute, and is found on the parent axis when the current
context node is the attribute node itself. One can specify all of the attributes of the particular context node (which must be an element for
this to make sense, since only elements can have attributes) with @* (short for attribute: : *), so that p/@* navigates to all of the
<paragraph> elements that are children of the current context node and then to all of the attributes of any type that are associated with
each of them.

In addition to specifying elements and attributes by name, one can specify text nodes as text (), so that, for example,
paragraph/text () navigates first to the <paragraph> elements that are children of the current context node and then to all of the
text nodes that are its immediate children. Similarly, one can use the shorthand notation node () to refer to all types of nodes together.
For example, paragraph/node () first finds all of the <paragraph> elements that are children of the current context and then all of
the nodes of any type that are children of those <paragraph> nodes. Remember, though, that since no axis is specified explicitly before
node (), the child axis is implied. This means that node () refers to elements and text nodes, but not attribute nodes, because attribute
nodes are not found on the ch1i1d axis.

Predicates

Predicates are used to filter the results of path expressions. The sequences that are returned by path expressions have an inherent and
stable order, which is called document order. In XPath, document order is defined as depth first, which means that when the system has to
return nodes in order, it looks down before it looks right, it never looks up (except to resume where it left off), and it never looks left.
Here’s an example:

< 17

Suppose we use the path expression p//* to find all of the elements of any type (thus the asterisk) anywhere (thus the double slash,
which means descendant axis) inside a <p> element (that is a child of the current context). The preceding example shows one such
<p> element with all of its descendant elements numbered in document order. Their type is not specified because this particular path
expression is looking at all descendant elements, without checking their type.

Because XPath document order is depth first, the processor looks down and to the left and finds the first element to add to the sequence
to be returned, which is #1. But what should the second element in the sequence be? In a depth first system, like XPath, before the
processor looks for the siblings of #1, it looks to see whether #1 has any children, and if so, it goes there first, so the next element it
retrieves in #2. Since #2, in turn, has children, the system then gets #3. Because #3 doesn’t have children, the system then looks to the
right, where it finds #4. At that point it has hit a dead end, with no children and no following siblings. It therefore backs up to the most
recent place where it turned down, which is #2. Since the system has already visited the children of #2 (#3 and #4) and #2 doesn’t have
any following siblings, it backs up again, this time to #1. It has already visited its children (it has only one child, #2), so it looks to its
following siblings and finds #5. Before it continues scanning other siblings, though, it notices that #5 has a child, #6, so it heads there
next, etc., traversing the tree according to the numbering above.

The procedure for a depth-first traversal of the tree can be illustrated by the following flow chart:

Succeed

Succeed

Get new Get. Go up
110 following N
child? st to parent?

If you're not familiar with flow charts, the conventions used here are:

e The chart is a formal representation of how to do something. In this case, that something is traversing a tree in depth-first order.

¢ Ellipses represent termini (start and end points).

e Arrows represent steps in the process. They can either be absolute (what you always do, e.g., you always go from the start point to
looking for a child node) or conditional (depending on whether a test succeeds or fails, about which see below). Absolute steps are
unlabeled. Conditional steps are labeled to indicate the condition under which you follow them.

¢ Diamonds represent tests, which in this chart can either succeed or fail. Each diamond has two labeled arrows emerging from it,
telling you where to go depending on the outcome of the test. For example, if you're trying to get a new child node and you succeed
in doing that, you then try to get its first child node, represented by the looping “Succeed” arrow. If you fail because there are no
children (either none at all or none that you haven’t already visited), you follow the “Fail” arrow instead and try to get a sibling.

e This chart has one starting point and one stopping point, and you always wind up at the stopping point.

If you follow the full sequence (in either the flow chart above or the numbered node diagram above that), you'll see that the algorithm is
that you collect nodes as you visit them and add them to the sequence you're collecting, but you don’t add any node more than once. The
charts show the order for visiting nodes in a depth-first traversal:

1. Try to visit any children of the current context node that you haven’t visited yet, starting with the leftmost. On the flow ch@rt, this is
the decision step labeled “Get a new child?” If that attempted visit succeeds, you add the node to the sequence you're building and it
becomes the new context node, so now try to visit its children. This is shown in the flow chart as looping on success (that is, if you
find a child, you then look at its children).

2. If your attempt to find an unvisited child fails, look right to see whether there are any following siblings. If there are, visit the closest
one, which becomes the new current context node, and then start looking at its children, following the steps of this procedure.

3. If there are no unvisited children (step #1 in the flow chart fails) and no following siblings (step #2 fails), try to back up the tree to
the parent to see whether it has any unvisited children. If so, visit them, following this procedure. If not (that is, if step #1 fails after
you've backed up), check for siblings of the parent(step #2). Whenever checking for siblings fails, keep backing up. If you back all
the way up to the document node (which doesn’t have a parent) and there’s nobody left to visit (that is, when step #3 fails), you're
done.

In general it’s best to think of XML in terms of node on a tree (elements, attribute, and text nodes), and not as a stream of characters with
tags thrown in, but some users find the tag perspective helpful when considering document order, especially in the case of the
preceding and following axes. From the perspective of tags:

¢ Starting from the current context element, the elements on the preceding axis (preceding: : *) are those with end tags that
precede the start tag of the current context element. If the end tag of an element precedes the start tag of the current context
element, it means that the entire other element must precede the current context.

* Conversely, the elements on the following axis (following: : *) are those with start tags that follow the end tag of the current
context element. If the start tag of an element follows the end tag of the current context element, it means that the entire other
element must follow the current context.

I've spent a lot of time discussing depth-first order because it can be used to filter a sequence by postion. Suppose you want to format the
first paragraph of each chapter specially, perhaps with a drop cap, or by suppressing the indentation that you apply to all other
paragraphs. One way to do this is to mark up that paragraph differently from the others, but that’s a fragile solution, since if you decide to
rearrange the text and the paragraph is no longer first, you have to change the markup in addition to moving it. On the web you can apply
special formatting to the first paragraph using Cascading Style Sheets (CSS), but not all publication is on the web. In XPath, though, you
can specify the first paragraph of each chapter by using a path expression like //chapter/paragraph[1]. This says: “First start at the
document node, at the very top of the document, and find all descendant <chapter> elements, that s, all <chapter> elements
anywhere in the document. Then, for each of them, find all of its child <paragraph> elements and select only the first one.” There’s
nothing magic about “first,” although it’s typically the most useful in real projects. If what you care about is the third paragraph of each
chapter, //chapter/paragraph[3] will retrieve that. Two other important details about numerical predicates are that:

¢ Because the last item in a sequence is often particularly useful, but its numerical value may vary, XPath provides a special pseudo-
numerical predicate: //chapter/paragraph[last ()] will retrieve the last paragraph of each chapter, without your having to
tell it how many paragraphs there are.

¢ Nodes are counted away from the current context node, which means that with axes that travel up (ancestor) or left
(preceding-sibling, preceding), the first node is the one closest to the current context node, etc., as if one were traversing a
depth-first sequence backwards. You can find illustrations of numbered traversal on different axes on pp. 609-12 of Michael Kay’s
book.

Predicates are expressed by putting them in square brackets after the step in the path expression to which they apply, and it doesn’t have
to be the last step. For example, //chapter[1]/paragraph[2] finds all of the <chapter> elements anywhere in the document and
keeps just the first of them, and it then gets all of the <paragraph> elements that are children of that particular <chapter> and keeps
just the second of them.

Any expression in square brackets that filters a step in a path expression is a predicate. Numerical predicates are the easiest to
understand, since they test simply for the location of an element in a sequence returned by a depth-first traversal of the tree. More
complex predicates use functions, described in the next section.

Functions

Functions operate on the information returned by a path expression or another function. For example, the path expression
chapter/paragraph finds all of the <chapter> children of the current context and uses them to find all of their <paragraph>
children. If you don’t need the actual paragraphs, and you just want to count them, you can use the count () function, so that
chapter/count (paragraph) means that once you've made it to the chapter, you should return not the paragraphs themselves, but
just a count of them. This XPath expression will return a sequence of number values, giving the count of the number of paragraphs in each
chapter (that is, a count of the number of <paragraph> elements inside each <chapter> element). Note that this expression is
different from count (chapter/paragraph). The latter expression returns only one number because it defers counting until it has
retrieved all of the paragraphs inside all of the chapter elements that are children of the current context. The first expression, on the other
hand, counts separately inside each chapter. The difference is that the two use the count () function at different steps in the path
expression. There are two steps (find the chapters, and then for each chapter find the paragraphs), and one can count at either point.

XPath has a little more than one hundred functions, but in practical projects you'll rarely needs more than a couple of dozen, which you’ll
learn quickly as you start using them. Don’t try to memorize them all, but do read over the full list periodically, without trying to

memorize it, just to remind yourself of what’s available, so that you can look it up as needed. There are organized lists of all of tBe XPath
functions at https://www.w3schools.com/xml/xsl_functions.asp and detailed discussion with examples in Michael Kay’s book.

Functions can be nested. For example, there is a string-manipulation function to convert all text to lower case and a different function to
normalize the white space (spaces, tabs, new lines, etc.) in text (the rule converts all white space to plain space characters, reduces all
sequences of white-space characters to single spaces, and removes all leading and trailing white space). If you want to retrieve a set of
values and perform both of these functions, you can nest them: normalize-space (lower-case(.)). This means “take the current
context node (represented by the dot), convert any text in it to lower case, and then take the output of the Lower-case () function and
normalize the white space in it.”

You can use functions in predicates to filter expressions. For example, if you want to retrieve all of the chapters that consist of just a single
paragraph (perhaps as part of proof-reading; if they consist of a single paragraph, perhaps they shouldn’t have been independent chapters
in the first place), you can do that with //chapter [count (paragraph) eq 1]. This says “first find all of the <chapter> elements
and then filter them by saving only the ones where the number of <paragraph> elements they contain is equal to 1.” Note that the
<paragraph> elements in question are on the child axis because that’s what’s implied whenever no axis is specified.

You can also apply sequential predicates. Suppose you want to find all first paragraphs of chapters that contain more than a hundred
characters. XPath provides a string-1length () function that returns the length of text by counting characters. When it does this, it
operates on the string value of the element, which is the total count of all textual characters anywhere inside it, no matter how deeply they
may be nested. In other words, if a paragraph contains a mixture of plain text and, say, <quote> elements, the string-1length ()
function, when applied to that paragraph, will count equally the textual characters directly inside the <paragraph> element and those
inside the <quote> elements that may be inside the <paragraph> element. The XPath to specify all first paragraphs of chapters only if
they contain more than a hundred characters is //chapter/paragraph[1] [string-length(.) gt 160]. This says “find all of
the <chapter> elements anywhere in the document, then find their child <paragraph> elements and select only the first ones. Then
filter those by selecting only the ones whose string length is greater than 100, that is, that contain more than 100 characters.” The dot in
the string-1length () function here refers to the current context node, which became a <paragraph> element at the step of the path
expression that specified paragraph.

Note that retrieving the first paragraphs of all chapters only if they contain more than 100 characters is not the same as retrieving the
first paragraphs of all chapters that contain more than 100 characters. The first of these tasks will return nothing for chapters where the
first paragraph fails to contain more than 100 characters. The second will return nothing for a chapter only if none of its paragraphs
contains more than 100 characters, and you could write itas //chapter/paragraph[string-length() gt 100] [1].The way
this expression operates is that it finds all chapters in the document, and then, for each chapter, it finds all of its paragraph children. It
filters those paragraph children by keeping only the ones longer than 100 characters, and it then keeps only the first of the paragraphs
that survive that filtering. The two expressions, //chapter/paragraph[1] [string-length(.) gt 160] and
//chapter/paragraph[string-length() gt 100] [1], return different things because the predicates are applied in order, from
left to right.

Review of terms and symbols

The preceding survey of XPath has introduced a lot of new terms. For review purposes, the ones you should remember (or, at least,
recognize when you see them again) are:

Term Definition

axis Path direction and scope, e.g.,, ancestor, preceding-sibling.

depth-first

See document order, below.
order

document | The node that serves as the parent of the top-level, or root, element. The document node is the only node of any type on an
node XML tree that does not have a parent node.

document | XPath traverses the tree in depth-first order, which means that it visits nodes in order and looks at a node’s children
order before it looks at its following siblings.

Operation that can be performed on the result of a path expression, e.g., counting the number of nodes and returning just

function .
the count instead of the nodes themselves.
node Part of an XML document. The most important types of nodes are element, attribute, and text ().
S}E:;};ession The way to reach the nodes you care about. Path expression may have multiple steps, separated by slash characters.

predicate A filter applied to the results of a path expression, specified in square brackets.

root

element The element that contains the entire document. The root element is actually the child of the document node.

sequence An ordered collection of pieces of information. One example of a sequence is the nodes singled out from the tree in
document order by an XPath expression.

https://www.w3schools.com/xml/xsl_functions.asp

ZU

See also the table of axes, above. The shorthand axis notation is:

Symbol

Meaning

Expanded version

current context
node

self::* (for elements)

parent element

parent::*

descendant axis

descendant: :. At the beginning of a path expression, it means that the path starts at the document
node.

attribute axis

attribute::

Slash (/) indicates a step in a path expression. At the beginning of a path expression, it represents the document node.

21

<00>—-<dh> Digital humanities

Maintained by: David J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-02-21T14:50:49+0000

The XPath functions we use most

There's a more complete list, with examples, at http: //www.w3schools.com/xml/xsl_functions.asp.
1. A few useful XPath features

Variables

Variable names begin with a dollar sign, and you can create them as needed. See the discussion of the
for construction, below.

The dot: .

In XPath the dot represents the current node, whatever it is. For example, //age[. eq 10] finds all
of the <age> elements in the document and then filters them according to the predicate. The dot
within the predicate means to take each <age> element in turn (make it the current node) and test
whether it is equal to the value 10.

for $i in (sequence) return ..

The for construction can be used for iteration. for $i in (1, 3, 5) return (//sp)[$i]
will return the first, third, and fifth <sp> elements in the document. Variable names begin with a dollar
sign, so this XPath expression creates a variable $1, sets it to each of the values in the parenthesized
sequence in turn, and then uses that value as a numerical predicate to retrieve the corresponding <sp>
element. The name of the variable is arbitrary, except that it must begin with the dollar sign.

2. General-purpose functions

distinct-values(arg+)
Removes duplicates from a set of values.

reverse((arg*))

Reverses the order of the items in a sequence. Handy for counting backwards; the XPath expression (1
to 10) yields ten numbers in order but (10 to 1) yields an empty sequence because XPath can’t
count backwards. You can overcome this limitation with reverse (1 to 10). (Alternatively you
coulduse for $i in (1 to 10) return 11 - $i)

name(arg?)
Returns the name (GI) of the node. //*/name () will find all elements in the document and instead of
returning them (tags, contents, and all), it will return just their names.

3. Casting

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.w3schools.com/xml/xsl_functions.asp
http://www.obdurodon.org/
http://dh.obdurodon.org/

number (arg),string(arg) %

Convert the argument to the specified value. If you can’t be sure in advance that the conversion will
succeed (what does it mean to convert a string of letters to a number?), look up the details in Kay.

xs:string(arg),xs:integer(arg),xs:double(arg),xs:decimal(arg),xs:float(arg),

Cast to specific datatypes. May generate an error if the input value isn’t castable as the target datatype.
There are other datatypes that can also be used here.

4. Strings

concat(string+),string-join((string+),string)
concat () joins the strings asis. string-join() lets the user specify a sequence of strings to join
(the first argument) and a separator string to insert between the items.

normalize-space(string)

Converts all white space to space characters, compresses sequences of spaces into a single space, strips
leading and trailing spaces.

upper-case(string), lower-case(string)

Changes case of string. Useful for case-insensitive searching, sorting, comparing, etc. We never use
upper-case () ourselves.

string-length(string)
Returns the length of the string in characters. Often used as a path step, e.g,, //sp/string-
length(.).The preceding XPath finds all of the <sp> elements and then returns the length of each in
turn (the dot refers to the current context node, that is, to each individual <sp> as you loop through
them). You can'tuse string-length(//sp) because the string-length () function can only
take a single argument, and // sp is likely to return multiple nodes.

contains(stringl, string2),starts-with(stringl, string2),ends-with(stringl,

string2)
Tests whether the first string has the property specified by the second, that is, whether the first
contains, starts with, or ends with the second. Useful for filtering; //sentence[ends-with(.,
'?")1] finds all <sentence> elements and keeps only the ones that end with a question mark. The
question mark in quotation marks is the second string. The dot (not in quotation marks) is an XPath
way of representing the current node, whatever it is. For each <sentence> retrieved by
//sentence, then, within the predicate the dot is treated as the value of that particular (current)
<sentence> node.

translate(stringl, string2, string3)
Takes stringl and replaces every instance of a character in it from string2 with the corresponding
character from string3. translate('string', 'ti', 'pa') will change stringinto sprang
Can only do one-to-one replacements; see also replace (). Can be used for deletion by making
string3 shorterthan string2; //p/translate(., 'aeiou', '') willstrip all the vowels
from each <p> by replacing them with nothing.

substring-before(stringl, string2),substring-after(stringl, string2)
Returns the part of stringl before (or after) the first occurrence of string2. Useful for breaking
apart certain structures, e.g., the area code for a ten-digit US telephone number in normal 123-456-
7890 formatis telephone/substring-before(.,'-").

matches(string, regex) %

Tests whether the regex (regular expression pattern) occurs in the string. We cover regex later; for now,
one type of regex is a plain string, so (with oversimplification) matches (stringl, string2) is
equivalent to contains(stringl, string2).The real power of matches () will become clearer
once we get to regex.

replace(string, regex, regex-replace)
The translate () function, above, can only replace single characters with single characters. The
replace () function can match regex patterns and perform more complicated replacements. Stay
tuned.

tokenize(string, regex)
Breaks a string into parts by dividing at the regex. Handy for processing IDREFS attributes; ask for
details.

5. Numbers

count((arg*)),avg((arg*)),max((arg*)),min((arg*)),sum((arg*))
Count, average (mean), largest value, smallest value, and total of all values. The arguments have to
make sense; trying to run sum () over letters will generate an error. Note the double parentheses; these
functions take a single value that is a sequence, not a set of values. sum(1, 2, 3) will generate an
error because it lists three values. sum((1, 2, 3)) yields 6 because there is just a single argument,
a sequence of three values.

ceiling(num), floor (num), round (num)
These take a single argument and round up, down, or closest.

6. Boolean

not(arg)
Inverts the truth value of the argument. Usefully wrapped around other functions, e.g., //p[not (q)]
returns all <p> elements that do not contain a <g> child element.

7. Context

position()
Returns the position of the node. Useful for filtering, e.g., (//sp) [position() < 6] retrieves the
first five <sp> elements in the document. Note that nothing goes inside the parentheses.

last()
Used as a positional predicate. (//p) [1] returns the first <p> element in the document. (//p)
[1ast ()] returns the last. Note that nothing goes inside the parentheses.

8. Comparison

XPath supports two types of comparison: value comparison and general comparison.

Value comparison

The value comparison operators are: 24

* eqequal to

e ne not equal to

e gt greater than

e ge greater than or equal to (not less than)
¢ ltless than

* le less than or equal to (not greater than)

Value comparison can be used only to compare exactly one item to exactly one other item. For example, to
create a predicate that will filter <sp> elements to keep only those where the value of the associated
@who attribute is equal to the string “hamlet”, we can write:

i //spl@who eq 'hamlet'] :

Since each <sp> has exactly one @who attribute and since we are comparing it to a single string, the test
will return True or False for each <sp> in the document. Because the “exactly one item” can be an empty
sequence (technically no items), the test will also work (and return False) when an <sp> element has no
@who attribute. It is, however, an error if either side of the comparison contains a sequence of more than
one item.

Value comparison is often used for numerical values. To keep all of the speeches (<sp> elements) with
more than 8 line (<1>) descendants, we can write:

//splcount(descendant::1) gt 8]

In the preceding example, the output of the count () function is a single item, an integer, and it is being
compared to another single item, the integer value 8.

General comparison

The general comparison operators are:

e =equalto

e I=notequalto

* > greater than (may also be written >)

e >=greater than or equal to (not less than; may also be written >=)
¢ <less than (may also be written <)

e <=less than or equal to (not greater than; may also be written &It;=)

While value comparison operators can compare only one thing on the left to one thing on the right,
general comparison operators can have one or more items on either side of the comparison (also zero
items, since the empty sequence is also allowed). For example:

//sp[@who = ('hamlet', 'ophelia')]

will retain all <sp> elements where the @who attribute is equal to either “hamlet” or “ophelia”. This
makes general comparison a convenient alternative to a complex predicate like:

//sp[@who eq 'hamlet' or @who eq 'ophelia'l

In comparisons with exactly one item on either side of the comparison operator, value comparison and
general comparison are equivalent.

One possibly surprising feature of general comparison is the way it behaves with negation. Consider:

//sp[@who != ('hamlet', 'ophelia')]l

This does not find all speeches by anyone other than Hamlet or Ophelia! It finds all speeches where the
@who attribute is not equal to any one of the individual items in the sequence on the right. This means
that it finds all speeches without exception, since the ones by Hamlet are not by Ophelia (the test succeeds
because @who is not equal to “ophelia” in situations where it is equal to “hamlet”) and vice versa.

So how do you find all speeches by anyone other than Hamlet or Ophelia? Try:

The preceding predicate says that we want to keep all speeches where it is not the case that the @who
attribute is equal to either “hamlet” or “ophelia”.

Summary of comparison operators

Description Value | General
Equal to eq =
Not equal to ne I=
Greater than gt >
(>)
Greater than or equal to o >=
(not less than) & (>=)
Less than It =
(<)
Less than or equal to le <=
(not greater than) (&It;=)

26

newtFire {dhlds}
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last
modified: Sunday, 06-Aug-2017 18:15:25 EDT. Powered by firebellies.

Autotagging with Regular
Expressions (Regex)

Regular Expression Matching (Regex)

When we need to convert plain text or other digital text files into XML, we look for strategies to
convert patterns into markup. For example, there may be clear signals in the text to show us divisions
between sections (as in chapter breaks in a book, or act and scene divisions in a play), and we might
be able to tell from patterns of line breaks where paragraph divisions fall. To help us identify, match,
and locate all of these in a file at once (instead of one at a time), we use regular expressions, which
are basically patterns to match strings of text. There are many slightly different varieties of regular
expressions used in different coding and programming environments, and we will be using one of
these that is standard for our XML editing work and the <oXygen/> editor we are using.

We use regular expression matching in what we call up-conversion from text to XML, and we also
use it sometimes when we write XSLT to transform XML-to-XML, when we need to add markup
based on particular patterns we can locate in the text. (For example, we might find that all the dates
in a document are written in the same format and wrapped in square brackets, and we can quickly use
regular expression matching to distinguish dates from other kinds of square-bracketed material by
identifying the brackets and a pattern of numbers and hyphens. We locate and alter those dates with
regular expressions either while coding an XML file or in up-converting a plain text file.)

In <oXygen/>, look at the Find/Replace window, select the checkbox next to “Regular Expressions”
in the Options menus, and try typing a backslash character (\) into the Find window to bring up a
short scrollable list of regular expression patterns. There are many others we can use, and we tend to
look these up and deploy them as needed (rather than memorizing a long list). We use this handy
Regular Expressions Info Quick Start Guide very frequently, and it’s a great place for you to start
learning and looking up regular expression patterns. The regex expressions we are listing on this
page are those we use frequently in our projects. There are other convenient listings online, such as
The Regular Expression Library at RegExLib.com , or Wikipedia’s Regular Expression page which
may also be helpful. In the next section, we’ll discuss some basic starting points and procedures we
commonly use in our up-conversion work.

Autotagging: Up-conversion from Plain Text

When we begin converting text files to XML, we start in the <oXygen/> window, and we try to show
all the special formatting characters in the document. In <oXygen/>, go to Options -> Preferences -
> Editor: Whitespaces: and mark to Show TAB and SPACE marks.

We then go to the Find/Replace window (CTRLAF on a PC computer, or on the “Find” dropdown
menu), and do the following:

e Select Case sensitive
e Select Wrap around

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://www.regular-expressions.info/quickstart.html
http://regexlib.com/CheatSheet.aspx
http://en.wikipedia.org/wiki/Regular_expression

27

e Select Regular expression

o Important: At least at first, we suggest you deselect "Dot matches all." The “dot” represents
any character, and it can be very powerful or a little unwieldy! When “Dot matches all” is
selected, it includes newline characters, and so if you wrote .+ to match more than one
character, it could match an entire document, what we call a greedy match. When we deselect
“dot matches all,” it matches any character within a line, and is typically easier to maneuver!
That said, there will be times that "Dot matches all" is useful, in combination with other
expressions.

We typically do the following in the Find/Replace window, first working on changing special
characters not permitted in XML content, working with ampersands first. (The order is important
here, because you don’t want to change ampersands twice when you’re working on the angle bracket
characters (if you have them). If you do the angle brackets first, you then leave those new ampersand
characters designating the left and right brackets open for conversion when you only want the real
ampersands by themselves. Make sense?)

1. Change & to &

2. Then change < to < and > to >

3. Look for ways to condense multiple blank lines, but only after analyzing your document and
determining which ones should be kept as markers of, say, section breaks: We typically look
for something like this, hunting for “newline” characters, \n:

\n{3,} or \n\n\n+ in the Find window, and replace with \n\n, or whatever makes sense to you!

4. While it may make the most sense to save this for last, you will need to (manually) add a root
element to surround everything and make an XML file.

Useful Regex Pattern Symbols:

¢ \n =new line character (in RegEx) Example: replace \n with </item>\n<item>

o \t =select tab

\s = selects any white-space character (including tabs and new lines). In the Replace window,
use the space-bar to insert spaces.

\d = select digit

\D = select non-digit (note upper-case)

\w = select word (or alphanumeric) character, either a letter or a number

\W = select non-word character (note upper-case)

A = beginning of line.

$ =end of a line

. = the dot: Matches any character except new line. Selects any character within a line as long
(as long as you do NOT check “dot matches all”’ in Find & Replace. If “dot matches all,”
this will select line breaks too.)

Indicating How Many, Either | Or, and Character Sets []:

e ?=used after a character, picks up zero or 1 of it: so colou?r matches both “color” and
“colour”

e * =used after a character, picks up zero or more of it: (the character may or may not be there,
and maybe there’s more than one of it). So \w\s\d* picks up a letter followed by a space, as
well as a letter followed by a space and a number.

e + =used after a character, picks up 1 or more of it: For example, \d+ picks up either one or
more digits, 2 and 25 and 65746, etc.

e | =(the pipe): selects one OR the other: greylgray or gr(ela)y are each patterns that will match
either grey or gray.

28

¢ [] matches any ONE character enclosed. Example: [0-9] will select the first single digit from
0-9 that it finds. [IVXLC]+ is handy for picking up one or more Roman Numerals, but be
careful because this will also pick up "I" when it’s not a Roman Numeral but the first-person
pronoun: (I, as in myself). [NIVXLC] will select anything but these characters.

Escaping Regex's Special Characters (When You Need To Find a Square Bracket, Period,
Asterisk, Question Mark, Etc.)

Because characters like square brackets, asterisks, and question marks have special meaning in
regular expressions, in order to search for a literal square bracket, asterisk, or question mark, you
need to escape the regex character by using a backslash (\). The following characters need to be
escaped with a backslash if you need to find the literal character in your text:

the backslash itself: (\)

the caret (/)

the dollar sign ($)

the pipe (1)

the dot (.)

the question mark (7))

the asterisk (*)

the opening and closing parentheses ((and))

the opening square bracket ([), and the opening curly brace ({)

So, for example, in order to search for a string of alphanumeric characters followed by a literal
period, we would write the following expression:

\W+H\.

The "backslash w plus" looks up any one or more alphaumeric characters, and the backslash dot
looks for the literal period. This might look a little confusing at first, since we use the backslash to
introduce specific kinds of regular expression characters (\d, \w, etc.). It might help to think of using
the backslash as an escape character whenever you need to locate a character that means something
special on its own in regular expressions.

How to Use Parenthetical Grouping in the Find Window and Select Groups with
Backreferences in the Replace Window:

When we group patterns in the Find window with parentheses, we can use backreferences to select
parenthetical groupings by number in the Replace window. We apply a set of capturing parentheses
to isolate some parts of a pattern we find, if we want to exclude the rest when we go to replace.

¢ () matches and captures all text enclosed. Groups a collection of characters together in the
“Find” window so you can select it in the “Replace” window. We presume here that you set
these parenthetical groups side by side, rather than nest them inside each other, so that the
groupings read from left to right.

¢ \1 =under “Replace with”, this represents the first instance of text captured using (), above,
under “Text to find”.

e \2 =second () instance captured, as above

e \3 =third () instance captured, as above, etc...

¢ \0 =capture the entire match regardless of parentheses.

29

Note that you can use backreferences in any order, and repeat them as needed when you are making
replacements, so you can thoroughly remix the regex patterns you’ve grouped! For examples of
backreferencing, see the Regular-expressions.info page on the subject.

For example, I’ve just gone hunting through our Georg Forster voyage file to see if I can find all the
references to days that take this verbal form: the 23rd of April (or the 15th, the 2nd, or the 3rd of
whatever month and/or year). Let’s say I wanted to isolate only the numbers and not the letters (as in,
simply, 23, 15, 2, 3), and wrap those in an element I’ll call <day>, and then I also want to keep the
rest of that text to immediately follow? What I want to do is change this form: 23rd, into this:
<day>23</day>rd . That’s a perfect opportunity to use parenthetical grouping in Find and Replace,
like this:

 Find window: (\d\d*)([a-z]+)

Notice how we’re applying parentheses here to isolate the numerical portion, and then a
second set to surround the lower-case character set.

¢ Replace window: <day>\1</day>\2

Here, I indicate that the “day” element is to sit around the first parenthetical grouping I've
isolated: just the numbers. Then I give the second parenthetical grouping that’s going to sit
right outside. This works in my markup to help me hold only the numerical portion of the date
inside a handy XML element.

Note that you might want to use parentheses for reasons other than capturing and backreferencing.
For example, you might group a series of options marked with vertical pipes (|) inside a
parenthetical group in order to set this group of options apart from the rest of your non-optional
regex pattern. In this case, you’re using non-capturing parentheses, but you can hold capturing
parentheses inside, and when you refer to them, you still refer to them working from left to right,
from inside the non-capturing parentheses. This can get a little complicated, and we refer you to the
Regular-Expressions.info page on "Branch Reset Groups" for details and examples.

Thinking Your Way Through an Autotagging Challenge:

There’s no single one way to do autotagging on a file: There are always options! Here are some hints:

1. When you begin, one of the things you do is analyze the structure of the document (do a
“document analysis”) to notice what regular patterns you can find. You don’t want to be
working on this line by line from the top to the bottom, because the point of autotagging is to
collect all the related kinds of things across the whole document. Instead, the big decision you
need to make is whether to work from the outside in, or the inside out.

In other words, do you try to capture all the big outer elements first (the ones that hold most of
the other elements inside), and then work your way in? Or go the other way, and start from the
inside elements (all the items inside the lists, for example)? Either approach can work, and
much depends on the patterns you spot as you analyze your text file.

2. Sometimes you “munge” your file accidentally and need to take steps backward, or start over
with a fresh copy of the file--that has happened to us! It can be frustrating--take a break and try
it again. (It’s also very rewarding when you get it just right!)

3. Try a close-open strategy: Quite often, the place where you open a new element is ALSO the
place where an old element closes. Can you do two things at once? Look for opportunities to
close a tag when you open a new one (or vice versa).

http://www.regular-expressions.info/backref.html
http://dh.newtfire.org/ForsterGeorgComplete.xml
http://www.regular-expressions.info/branchreset.html

30

4. When you work on autotagging, you usually do some work at the top and/or bottom of your

file to change or eliminate a few things at the start or toward the end of your process. For
example, if you try the close-open strategy to indicate at the start of a <list> element where the
previous <list> ended, you’d write the code like this: </list><list>[regex pattern here]. When
you’ve made your replacements, you’ll always have an extra closing </list> tag ahead of your
first <list> element, but you can easily just manually delete this one rogue tag when you’re
cleaning up your file.

. When up-converting to XML, think about whether you really need or want to preserve things

in your text files that function as pseudo-markup, that is, things that functioned like structural
markup to indicate things like quotations, section divisions, separators between paragraphs.
XML tags can be used to mark all these things, and you can apply HTML and CSS later to add
dividers as you wish when you publish this in electronic form. But keep in mind as you
analyze and convert your documents that you don’t really need to preserve formatting for the
sake of preserving it. Remember that you want your XML markup (your tags themselves) to
hold meaningful information about the structure and content of your document, so you do not
really need to include the pseudo-markup in the original text. Systematically removing that
pseudo-markup is part of your up-conversion process.

Some useful patterns:

(alb)aorb

x{2,} two or more X’s

p{3} Exactly 3 p’s

q{3.} 3 or more q’s

B{3,5}3,40r5B’s

A(+)$ Since a caret (A) indicates the start of a line, and the dollar sign ($) indicates the end
of a line, and the .+ indicates the presence of some characters inside, this pattern selects lines
that contain text (and ignores any lines that are empty). You could run a Replace to work with
the capturing parentheses and wrap that content inside an element that makes sense (like
<item>). In the Replace window, we’d write <item>\1</item> to tag the text inside the line.
A[TVX]+\. .+$ =beginning of a line, any roman numeral less than 50, exactly one literal period,
exactly one literal space character, then all characters up to the end of the line

\s\s Find any sequence of two white-space characters (space, tab, new-line). If you’re running a
Find and Replace, you might replace these multiple white-space characters with a single \s, or
use the spacebar.

Replacing line breaks:: Match the \n (or newline character) in order to "consume" and replace
a linebreak. It won’t work to try to replace A and $, which indicate the start and end of lines,
because these are not characters that can be replaced; they are merely anchors or indicators.
Read about how to write a Lookahead and Lookbehind regex, to look for a pattern of
something ahead or behind of a character, or something that is NOT ahead or behind a
character. Read about it and look at examples on the Regular-Expressions.info guide to
"Lookaround."

Regular Expressions in XPath and XSLT

There are XPath functions dedicated to matching and converting regular expressions: These include
the following:

http://www.regular-expressions.info/lookaround.html

31

e matches(): This takes two arguments: you designate a first string, and then a second that
indicates a particular pattern you're trying to find inside it. For example, if you were looking in
all the paragraphs of a document coded with <p> to find any paragraphs that contain at least a
single digit):

//p[matches(., "\d")]

Remember, the dot in the XPath indicates that you’re looking at the string of text inside each
paragraph in turn, and that is the first string. Then the second string is the regular expression
pattern \d, which indicates a pattern to search for any numerical digit inside the string of text in
the paragraph.

Note: There are three other related XPath functions that work like matches(), only these work
on literal strings, not regex patterns. We include them here because you may find them useful
to think about in connection with matches():

o contains(): Tests whether the first string contains a particular literal string. To adapt our
example above, say we are looking for all the paragraphs that contain a mention of the
specific year 1995. We’d use contains() much like we’d write matches(), but this time
using the literal characters.

/Ip[contains(., "1995")]

(Note: You can actually write matches() to look for a literal string as well as a regex
pattern, since one kind of regex actually is a literal string. So, of these two, matches() is
the more adaptable XPath function, and contains() can only match on literal strings.)

o starts-with(): Tests whether the first string starts with a particular literal string.
o ends-with(): Tests whether the first string ends with a particular literal string.

e replace(): This function has three parts in its parenthetical expression: replace(string, regex,
replacement-string), and works like this, for example, if we wanted to go look in any <author>
element for capital letters, and replace them all with literal asterisk characters:
/lauthor/replace(., "[A-Z]", "*")

Here, the regex pattern is described in the middle expression to define the pattern we’re
looking for, and it’s a defined character set: This says, look for any single character from the
set [A-Z] and replace it with a “splat” or an asterisk. When I ran this XPath expression on our
ForsterGeorgComplete.xml file, I converted Forster, Georg in an author tag to *orster, *eorg.
(Fortunately this was just a tester XPath, and it didn’t change the string of text in my file, just
in the XPath results window.)

e tokenize(): This one is extremely handy for fine-tuning XML markup: We use the tokenize()
function for a sort of surgical precision in our documents, to break patterns into parts (or
“tokens”), by dividing on a particular regex pattern: tokenize(string, regex-pattern), and the
output breaks my string into parts that I can grab and work with. For example, I'll go looking
for <author> elements again to grab their text, and tokenize it on white space, defined as a
regex pattern by \s+:

//author/tokenize(., "\s+")

When I run this in the XPath window, I return (among other things), a list that separates
“George” from “Forster.”. (When we tokenize on white space, it’s a good idea to work in the
option for one or more spaces, in case we have a line break as well as a space character
separating two parts of a thing.)

http://dh.newtfire.org/ForsterGeorgComplete.xml

32

In XSLT, there is an element, xsl:analyze-string that we use for manipulating regular expressions,
and you can read more about it in the Michael Kay book if you have it, or on the Obdurodon site’s
tutorial on using analyze-string.

http://dh.obdurodon.org/analyze-string.html

33

<o00>—-+<dh> Digital humanities

Author: Janis Chinn (janis.chinn@gmail.com)
Maintained by: David]. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-02-26T03:28:40+0000

Introduction to XSLT

The basics

You already know how to mark up (XML), constrain (Relax NG), and navigate (XPath) your documents; XSLT (eXtensible
Stylesheet Language Transformations) is one way to transform your document, manipulate the tree, and output the results as
XML, HTML, SVG, or plain text. You might use XSLT to generate project pages for display on your site, to generate
intermediary pages for analysis and development, or to feed pieces of your data into another format for analysis with another
tool, one that requires data in a particular format that is different from your main XML structure. Since XSLT is XML-aware, it
uses XPath to navigate and manipulate your document, which means that when you use XSLT to implement a transformation
(see below), you automatically use XPath within XSLT to find the pieces you want to transform (XPath expressions and XPath
patterns) and to manipulate the data (XPath expressions).

An XSLT stylesheet is an XML document that must be valid against the XSLT schema. The root element in this schema is
<xsl:stylesheet> and the children of the root are primarily <xs1:template> elements. These template elements
typically have a @match attribute that matches an XPath pattern and instructs the computer to use that template to process
all matching nodes. For example, a template node that matches <p> elements will be used to process <p> elements in the
input document.

XSLT is a declarative programming language (unlike most programming languages with which you are likely to be familiar),
which means that part of the way it works is that the templates don’t get applied from the top of the file to the bottom. What
happens instead is that program execution passes from template to template because an <xs1:apply-templates>
element inside a template rule tells the system what to process next. One consequence of this model is that the order of
template rules inside the stylesheet doesn’t matter because they don’t get applied in that order. Rather, they get applied
whenever an <xs1:apply-templates> element or the equivalent specifies that a particular type of node must be
processed. When that happens, for every element or other object in your input document, if there is a template anywhere in
the stylesheet that matches it, the stylesheet will find it and the template will fire.

XSLT builds in default rules to handle nodes for which there is no explicit template rule, which means that you have to write
your own template rules only where you want something other than the default behavior. The default behavior is that if you
try to apply templates to an element for which you haven’t created an explicit template, the system will pass silently into that
element and apply templates to its children, until eventually the only thing left is to output the text. For that reason, if your
stylesheet contains no templates at all, applying the stylesheet to the document will output all the plain text in your XML,
without any markup; the default behavior will navigate from the document node at the top of the tree all the way down,
outputting text whenever it encounters it. (This is rarely what you want!)

A typical stylesheet has the following exoskeleton, which <oXygen/> will generate for you when you create a new XSLT
document:

———

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="3.0">

</xsl:stylesheet>

For most purposes, you'll want to be sure the @versiion attribute is set to 3.0, which should be the default behavior in
<oXygen/> (and you can make it the default if it isn’t already).

mailto:janis.chinn@gmail.com
mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.obdurodon.org/
http://dh.obdurodon.org/

Remember that running an XSLT stylesheet that contains no template rules on your XML will essentially strip out all y8fir
markup and output plain text. This is rarely what you want. Typically you'll need to add at least one template rule to generate
useful output.

Namespaces
The input namespace

If your XML document is in a namespace, you'll need to tell your stylesheet about the namespace in order to process it with
XSLT. To do this, add an @xpath-default-namespace attribute to the root <xs1l:stylesheet> element and set its
value to the value of the namespace declaration from the input XML file. For example, if you are transforming a TEI XML
document with the following namespace declaration:

———

the root <TEI> element states that all elements within the document are in the TEI namespace (unless you explicitly say
otherwise). If you were to write a template rule in your XSLT matching just “TEI”, it wouldn’t be applied, because the system
would be looking for <TEI> elements in no namespace, whereas the XML declares that the <TEI> element is in the
http://www.tei-c.org/ns/1.0 namespace. (Generally, if you run a transformation where you have template rules,
none of them gets applied, and you just get plain text in the output [as if you had had no template rules], it's because of
mismatched namespaces. In that situation, no template rules are being applied because they only match elements in no
namespace and all of the elements in your input XML are in a namespace, which means that the transformation falls back on
the default behavior described above.) To tell your stylesheet always to look for elements in the TEI namespace, our
<xsl:stylesheet> element should look something like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="3.0" xpath-default-namespace="http://www.tei-c.org/ns/1.0">

Should you have input in mixed namespaces (perhaps a TEI document in the TEI namespace that contains embedded SVG in
the SVG namespace), see your instructors for guidance about how to deal with it.

The output namespace

The @xpath-default-namespace attribute specifies the namespace of the input XML. If your output is going to be in a
namespace (for example, if you are outputting HTML, which must be in the HTML namespace), you also need to specify the
output namespace. When outputting HTML, the namespace declaration is “http://www.w3.0org/1999/xhtml”, so if you are
transforming TEI to HTML, your root <xs1:stylesheet> element must read:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="3.0" xmlns="http://www.w3.0rg/1999/xhtml"
xpath-default-namespace="http://www.tei-c.org/ns/1.0">

The green text says that the default namespace for all elements that you are creating in your output document is the HTML
namespace. The blue text says that the namespace for all elements in your input document is the TEI namespace. If your input
or output are in no namespace you should omit these declarations, and if they are in other namespaces, you’ll need to use the
appropriate namespace values.

Controlling your output with <xs1:output>

You should always have an <xs1:output> element to control the type and formatting of your output. <xs1:output>isa
top-level element, which means it must be a child of the root <xs1:stylesheet> element (making it a sibling to all your
template rules, which are also top-level elements). <xs'1:output> is usually placed at the top of the document, as a first
child of the root <xs1:stylesheet> element, because that makes it easier for humans to find, but as long as it is a child
(not a grandchild or other descendant) of the root element, your document will be valid. Officially, <xs1:output> is an
optional element, which means that if it's omitted you won't get an error message, and the system will try to guess the kind of
output you want, which can lead to errors if it guesses wrong. At minimum, <xs1:output> should have a @method

attribute. You may also need to set a value for the optional @i ndent and @doctype-system attributes. Here areXome
guidelines:

e @method specifies the type of output, and the accepted values are “xml”, “html”, “xhtml”, and “text”. The correct output
method for all XML documents (including HTML5 documents) is “xml” (that’s right; we use “xml”, rather than “html” or
“xhtml”, for HTML documents). The only other value we use in our own work is “text” (for plain text output).

¢ The @indent attribute specifies whether or not the output should be pretty-printed, that is, indented in a way that
wraps long lines and makes it easy to see the hierarchical structure. We normally set this to “yes” because it makes the
output easier for humans to read. Because this type of indentation works by inserting spaces and new-line characters,
there are some situations where automatic indentation can mess up your content, and in those situations you can use
this attribute to turn off the indentation. XML (including HTML5) doesn’t normally care about the indentation, so
whether you turn it on or off is just for the convenience of the human who may need to look at the angle-bracketed
output of the transformation. HTML5 output will be wrapped properly in the browser even if you turn off indentation
and the angle-bracketed view looks like one long line.

¢ [fyou are creating HTML5 output, you will also need to include the @doctype-system attribute, the value of which
must be “about:legacy-compat”.

For HTMLS5, then, putting it all together, you should use:

...

Telling templates when to fire by using the @match attribute with an XPath
pattern

Except in situations you are unlikely to encounter in our course, <xs1:template> requires the attribute @match, which
matches an XPath pattern. An XPath pattern is not the same as a full XPath expression; it is just a piece of one, the minimum
XPath needed to describe what you want to match. For example, to match all <p> elements in the document, write
match="p" instead of match="//p". In other words, templates don’t specify where to look for the elements they match
because they sit around waiting for the elements to come to them (courtesy of <xsl:apply-templates> or built-in
processing rules), and for that reason they only have to describe what it is that they match, and not how or where to find it.

With that said, by varying the completeness of the pattern, you can get more or less specific about how to handle, say, <p>
elements in different parts of the XML tree. If you want to treat <p> elements inside a <chapter> differently from <p>
elements inside an <introduction>, you can create separate templates that match “chapter/p” and “introduction/p”, with
as little context as you can get away with to specify the difference. But you don’t need (= shouldn’t have) a full path; your
XPath pattern must be the simplest pattern that will match what you want to match. Most of your stylesheets will consist of
<xsl:template> elements for each type of element that might arise in your input document (unless the built-in behavior,
described above, which applies if there is no template, already does what you want, in which case you should not create an
explicit template just to mimic that behavior).

Most (if not all) stylesheets you'll write in this course will begin functionally with a template matching the document node,
which is both the (generally invisible) parent of the root element and the uppermost node in the hierarchy of every XML
document. When an XSLT stylesheet is applied to an XML document, the system always starts at the document node when
looking for templates to apply. To match the document node, use the XPath pattern “/”. Any instructions that should fire only
once to create the superstructure for your output will typically be created inside this template, and you’ll need at least one
<xsl:apply-templates> elementin order to interact with the lower branches of your tree. If you're planning on
outputting HTML, the template that matches the document node is the place to create your HTML superstructure, and within
this superstructure you’ll want to include, typically, an <xs1:apply-templates> element that tells the processor how to
build the HTML output inside that superstructure. For example, a typical XML-to-HTML transformation might start with code
like:

———

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
exclude-result-prefixes="xs"
version="3.0" xmlns="http://www.w3.0rg/1999/xhtm1">
<xsl:output method="xml" indent="yes" doctype-system="about:legacy-compat"/>
<xsl:template match="/">
<html>
<head>

<title>Title goes here</title> 36
</head>
<body>
<xsl:apply-templates/>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

This matches the document node, creates the HTML superstructure that will go into the output, and then, inside the HTML
<body> element, applies templates to the children of the document node (by default, <xs1:apply-templates> means
“apply templates to the children of the node currently being processed”). The only child element of the document node is
always the root element of your input XML. Your stylesheet will also include other templates that specify what to do with the
various elements of your input XML (see below).

Think of your <xs1:apply-templates> elements as place-holders that mark where to output the results of applying the
templates they call. For example, any content you want to appear immediately inside the HTML <body> element that you're
creating can be placed correctly by putting the <xs1:apply-templates> element between the <body> start and end
tags.

XPath expressions vs XPath patterns

One common source of confusion for new XSLT coders involves the difference between <xs1:template match="XPath
pattern">and <xsl:apply-templates select="XPath expression"/>.The terms are unfortunately similar,
but here is how they work:

¢ Template rules start with <xs1:template match="XPath pattern"> and describe what the system will do
when something that matches the pattern happens to wander by. The pattern is “XPath-like”, which is say that it uses a
subset of XPath to describe what it will match. Don’t begin a pattern with //; templates don’t have to look for elements,
so they don’t need full paths. A template rule that begins <xs1:template match="div"> will match any <div>
element that needs to be processed, no matter where it’s located in the document.

¢ Inside a template you specify what the system should do when it encounters the item (usually an element) matched by
the @match attribute. A template can create new elements in the output, and it can also instruct the processor about
which elements to process next. The principal way it does the latter is with <xs1:apply-templates>. By itself, an
<xsl:apply-templates> element means “process (all) the children (elements and text () nodes) of the current
context node.” While this is the most common way to use <xs1:apply-templates>, you can tell it to process
anything at all in the input XML document (and even in other documents) by including a @select attribute, as in
<xsl:apply-templates select="XPath expression">.The value of the @select attribute is a full XPath
expression, and can point to any nodes on any axes.

Processing something other than immediate child nodes

By default, <xsl:apply-templates> means “apply templates to all child nodes (elements and text) of the current
context, that is, the node currently being processed”. You are not restricted to processing only child nodes, though;
<xsl:apply-templates> optionally takes a @select attribute, which tells the system what nodes to apply templates to.
The value of @select is a full XPath expression and will start from the current context, that is, from whatever node is being
processed at the time. For example, if you are transforming TEI to HTML and the only XML you want to process is in the
<teiHeader>, you can replace the general <xs1:apply-templates> with <xsl:apply templates
select="//teiHeader">.If@select is omitted, the system will default to applying templates to all descendants of the
current node. This behavior means that you don’t need to (= shouldn’t) specify @select if what you want to select is all of
the children of the current context.

<xsl:apply-templates> isusually an empty element, but you may include <xs1:sort> between separate start and
end tags to sort the nodes you're applying templates to. By adding @select and @order to <xs1:sort> (see Michael Kay
for details), you can specify what to sort by (the default is the textual value of the element, but you can override that) and
whether to sort in ascending or descending order (the default is ascending).

Any elements you want to handle specially (that is, for which the built-in behavior is not what you want) will need their own
template rules. Remember, though, that templates fire every time the system encounters a matching node in the XML, so if
you want an element to be created once (for instance, the <htm1> element), it should go within a template that matches a
node that only appears once (for instance, /). If you're generating HTML <p> elements, on the other hand, you'll need those

to be inside a template that will fire many times because you want to generate many <p> elements, not one giant <{/>
element which contains the text of all the paragraphs. Similarly, if you are creating an HTML table with a lot of rows, you
typically want only one table, so you should create that directly inside the <body> element and then create the <tr>
elements for the rows in a template that fires once for each row you want to create. If, say, you want to create one table row
for each <character> element in your input, your XSLT will probably look something like:

<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" '
xmlns:xs="http://www.w3. org/2001/XMLSchema” exclude-result-prefixes="xs" version="3. ®”>
<xsl:output method="xml" indent="yes" doctype-system="about:legacy-compat"/>
<xsl:template match="/">
<html>
<head>
<title>Title goes here</title>
</head>
<body>
<table>
<tr>
<!-- header row with <th> elements to label the columns -->
</tr>
<xsl:apply-templates select="//character"/>
</table>
</body>
</html>
</xsl:template>
<xsl:template match="character">
<tr>
<!-- apply other templates to create the cells in the table row
for a particular character-->
</tr>
</xsl:template>
</xsl:stylesheet>

Note that you create only one <table>, so you do that inside a template that fires just once, the template that matches the
document node. You create one row for each character, though, so you create your <tr> elements inside a template that
matches <character> elements, and therefore fires once for each <character> element. The only <tr> that gets created
inside the template rule for the document node is the one that labels the columns, since you want just one of those.

<xsl:apply-templates> vs. <xsl:value-of>

Sometimes you get the content of an element or attribute by applying templates to it and sometimes you use <xsl:value-
of>. The difference between <xsl:apply-templates>and <xsl:value-of>isthat <xsl:value-of> canreturn
only plain text, that is, the textual content of a node (throwing away any markup), as well as the results of many functions and
other atomic values (an atomic value is essentially any value that isn’'t a node, such as a string or a number). The result of
<xsl:value-of> is always an atomic value, and it represents a dead end in the XML tree insofar as it cannot contain
markup, which means that you cannot apply templates to any part of it. If, for example, you are processing a paragraph node
tagged as <p>, <xsl:value-of select="."/> will return the textual value of the paragraph, throwing away any
internal markup. If you want to process that internal markup (for example, if the paragraph contains titles or foreign words
or emphasis or anything that should be processed separately), <xs1:value-of> will make it impossible to process those
elements, and all you'll get is their textual content, as if they weren’t marked up in the first place. If, on the other hand, the
paragraph has no internal markup, there is no difference in behavior between <xs'l:apply-templates> and
<xsl:value-of>. Asarule of thumb:

e Use<xsl:apply-templates> when processing a node (element, attribute) unless there is good reason to do
otherwise. If there’s no difference (because you're processing an element that just contains plain text), this will do what
you want. Where there is a difference, though, using <xs1:value-of> will throw away internal markup without
processing it, which is rarely what you want.

e Use <xsl:value-of> when outputting an atomic value, such as the value of an XPath function that retuns a string or
anumber.

Both <xs1:apply-templates>and <xsl:value-of> cantake a@select attribute to specify what should be
processed. That attribute is optional with <xs1:apply-templates> (if you don’'t use @select, you will apply templates
to all of the child nodes of the current context, whatever they may be), but the @select attribute is obligatory with

<xsl:value-of>.(The <xsl:value-of> element optionally also accepts a @separator attribute, which allo#¥s you to
specify a separating string to use when <xs1:value-of> outputs a sequence of values. The result is similar to the
specification of a separator in the string-join() function.) If you're curious, you can read more about the differences
between <xs1:apply-templates>and <xs1:value-of>in our guide to advanced XSLT features.

White space

As you know, white space is generally normalized automatically when processing XML documents. But what if you need to
preserve the white space from your original document in your transformation? How do you distinguish that situation from
one where there’s extra white space in your XML document because it was pretty-printed (lines wrapped and extra spaces
used for indentation), and the white-space isn’'t meaningful and shouldn’t be retained? Although these cases aren’t common,
when they do come up they are critical to outputting your document correctly. To resolve them you’ll want to use some
combination of <xs'l:preserve-space>or <xsl:strip-space>. These are both top-level elements (children of the
root <xsl:stylesheet> element) that take the attribute @elements, the value of which is a space-delimited list of
elements whose white space you want to preserve or strip out. If you want to affect all the elements in the document, you can
set the value of the @elements attribute to *. Typically, XSLT will do what you expect and you won’t need to use these
elements at all. If a problem arises, though, you can use <xsl:preserve-space> or <xsl:strip-space> to override
the default behavior and control the processing manually.

Outputting mixed content

XSLT usually does The Right Thing when it is outputting just elements or just plain text, but mixed-content output (that is, a
mixture of elements and plain text) can lead to awkward white-space handling. You can avoid having to worry about the
intricacies of XSLT white-space handling by applying the following rule of thumb: when you are outputting mixed content,
wrap all plain text in <xs1 : text> tags. For example, instead of writing:

<xsl:template match="book">
<jtem>
<cite>
<xsl:apply-templates select="title"/>
</cite>
by
<xsl:apply-templates select="author"/>
</item>
</xsl:template>

———

<xsl:template match="book">
<item>
<cite>
<xsl:apply-templates select="title"/>
</cite>
<xsl:text> by </xsl:text>
<xsl:apply-templates select="author"/>
</item>
</xsl:template>

...

Putting it all together

By way of illustrating a complete transformation here are a sample XML doucment (whose content you may recognize from
the first week of class) and a sample XSLT stylesheet to transform the XML into HTML for publication on the web.

{1 [<letter> i
2 <head>

3 <context>The following letter was written shortly after Wilde’s
4 release from prison:</context>

5 </head>

6 <content>

7

<dateline>
<Tnration>Rniien</1acatinn>

http://dh.obdurodon.org/xslt-basics-2.xhtml

| 8 <date> 39 '
P10 <month>August</month> |
Pl <year>1897</year> |
. </date> |
P13 </dateline> :
P14 <salutation><person type="recipient">My own Darling Boy</person>,</salutation>i
Po1s <body> |
16 <p>I got your telegram half an hour ago, and just send a line to say that
| |
Y I feel that my only hope of again doing beautiful work in art is being
P18 with you. It was not so in the old days, but now it is different, and
H you H
E 19 can really recreate in me that energy and sense of joyous power on
i which i
P20 art depends.</p> i
o2l <p>Everyone is furious with me for going back to you, but they don’t
P22 understand us. I feel that it is only with you that I can do anything
: at :
E 23 all. Do remake my ruined life for me, and then our friendship and 1ove
P24 will have a different meaning to the world.</p>
io25 <p>I wish that when we met at <location>Rouen</location> we had not parted
1 at 1
E 26 all. There are such wide abysses now of space and land between us. But
1 we 1
Y love each other.</p> !
I |
P28 </body> :
P29 <valediction>Goodnight, dear. Ever yours, <person type="sender">0scar</person>i
P30 </valediction> i
Pl </content> i
L2 O O > e

The XML is pretty straightforward. The root element is <letter>, has two children, a <head> and a <content> element,
and the latter contains the body of the letter and the rest of the element. Locations within the text are tagged, but for the sake
of simplicity and brevity, the sender and recipient are tagged only in the salutation and valediction, as <person> elements.
(That is, the personal pronouns that refer to them in the body of the letter are not tagged.)

Our sample output will be an HTML document that does not include any information from the <head> element; it outputs
our paragraphs as HTML paragraphs and italicizes all persons and locations. The result of the transformation can be seen
below:

...

Rouen, August 1897

My own Darling Boy,

I got your telegram half an hour ago, and just send a line to say that I feel that my only hope of again doing beautiful
work in art is being with you. It was not so in the old days, but now it is different, and you can really recreate in me
that energy and sense of joyous power on which art depends.

Everyone is furious with me for going back to you, but they don’t understand us. I feel that it is only with you that I
can do anything at all. Do remake my ruined life for me, and then our friendship and love will have a different
meaning to the world.

[wish that when we met at Rouen we had not parted at all. There are such wide abysses now of space and land
between us. But we love each other.

Goodnight, dear. Ever yours, Oscar

This is relatively simple to accomplish. The stylesheet is included below, followed by a discussion of how it works:

i 1]<xsl:stylesheet xmins:xsi="http://www.w3.0org/1999/XSL/Transform" 1
P2 xmlns="http://www.w3.0rg/1999/xhtml" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

: 3 | exclude-result-prefixes="xs" version="3.0"> :
: | !

§ 4 <xsl:output method="xml" indent="yes" doctype—system=”about:1egacy-compat”/>40 i
Pos <xsl:template match="/"> :
Po6 <html> i
P <head> :
o8 <title>Oscar Wilde Letter 2</title> |
P9 </head> :
P10 <body> |
o1l <xsl:apply-templates select="//content"/> i
P12 </body> :
P13 </html> :
io14 </xsl:template> !
| . |
1S <xsl:template match="dateline"> i
P16 <h4> :
P17 <xsl:apply-templates/> |
P18 </h4> |
P19 </xsl:template> :
L <xsl:template match="1location|person"> i
ol :
P22 <xsl:apply-templates/> i
P23 :
P24 </xsl:template> ;
Po2s <xsl:template match="p|salutation|valediction"> |
P26 <p> i
P27 <xsl:apply-templates/> i
P28 </p> i
P29 </xsl:template> i
L0 /xS LSty e ety e =

Lines 1-3 are created by <oXygen/> when you tell it to create a new XSLT stylesheet. The only part that we've added is the
HTML namespace declaration on line 2, so that all output will be in the HTML namespace:

...

Line 4 tells the system what type of document we’re outputting: an HTML5 document with indenting. Lines 6-13 set up our
HTML superstructure (we've added a <tit1le>, which will show up in the browser tab, but not in the browser window),
populating our <body> element with the results of applying templates to all <content> elements wherever they appear.
There’s only one <content> element, and no template for <content>, so the system falls back on the default behavior and
applies templates to all of its children. (Note that we never apply templates to <head> or <context>, so they will not be
output at all in our result document.)

The children of <content> are <dateline>, <salutation>, <body>, and <valediction>, and we have templates for
all of those except <body>. That means that we're relying on the default behavior for <body >, which is, again, to apply
templates to its children. The <datel1ine> element, whose template is on lines 15-19, will process the contents of the
element inside an HTML <h4> element. There’s no @select attribute on the <xsl:apply-templates> here, so the
system will apply templates to all children of the element (there are three: the <location> element, the text () node after
it that contains a comma and some white space, and the <date> element). We don’t have template rules for the second and
third of these, so the built-in rules will take care of them; the <location> element is processed by the template on lines 20-
24, which outputs the content wrapped in an element (typically rendered as italics in the browser).

The template on lines 25-29 actually covers three different elements: <p> elements, <salutation> elements, and
<valediction> elements. For all three, it outputs the contents inside an HTML <p> element. This way any <p>,
<salutation>, and <valediction> element in the input XML will become an HTML paragraph in our output. Since we
again applied templates without a select attribute, we again revert to the default behavior of applying templates to all
children elements of any <p>, <salutation>, or <valediction> element. Finally, the template on lines 20-24, which we
mentioned earlier, will tag the contents of any <1location> or <person> element as an HTML element, normally
causing it to be italicized in the browser.

Ly

<00>—<dh> Digital humanities

Maintained by: David J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-03-02T00:21:30+0000

Attribute value templates (AVT)

When you might want to use attribute value templates

Attribute value templates (AVTs) are a strategy for inserting the value of XPath expressions into the attribute value of created
content. Two typical situations where AVTs are useful are:

* You are creating a table of contents (TOC) and you want to create links (using the HTML notation) in the TOC that will point to the various sections in the body of the
document. Those links might make use of values taken from text in the input XML; for example, if each chapter has a unique
one-word identifier in an attribute value, like <chapter id="introduction">, you might want your links to read
something like . You can use an AVT to insert the value of the @id attribute from the input
XML into the value of the @href attribute of the output HTML.

* You are creating a research paper with footnotes. In your input XML, you’ve written the footnotes in the body of the text, to
keep them where they belong logically, e.g.,

———

<paragraph>Here is a sentence. Here is another sentence.<fn>Here
is a footnote, the number for which will go here.</fn> And here is
one more sentence, after the footnote number.</paragraph>

...

You want this to be rendered like the following, with the footnote number inserted automatically and the footnote text
rendered at the bottom of the page:

...

Here is a sentence. Here is another sentence.l And
here is one more sentence, after the footnote number.

...

The footnote number should be generated automatically, so that when you add or delete footnotes from the XML, the XSLT
will still generate correct, consecutive numbers in the output HTML. Furthermore, you want the footnote numbers to be
links, so that the user can click on them to jump to the footnote text (and click on the footnote text to jump back to the
previous location, although the back button would work in this case, as well). In this situation you can generate the numbers
automatically by using XPath to figure out which footnote is which, and you can use an AVT to incorporate those numbers
into the values of the @href attributes that will take the user to the notes themselves. For example, you might create HTML
like:

———

<p>Here is a sentence. Here 1is another sentence.^{1}
And here is one more sentence, after the footnote number.</p>

...

This output uses the HTML <sup> element to create a superscript number, and it puts the <a> element inside that to make
the number a clickable link. The numerical value itself, inside the <sup> element and again at the end of the value of the
@href attribute, is generated by the XSLT. For example, the next footnote would have “2” as its number and “#note2” as the
value of its @href attribute.

How AVTs work

A bit of background: When we create output HTML elements during an XSLT transformation by just typing the raw HTML tags
into the stylesheet, we are creating what are called literal result elements (LREs). As the name implies, when you want to have the
element markup (the tags) inserted literally into the output result, you just type it in the appropriate place in your stylesheet and
it gets created in the output tree. For example, in the following template rule:

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.obdurodon.org/
http://dh.obdurodon.org/

<xsl:template match="paragraph">
<p>
<xsl:apply-templates/>
</p>
</xsl:template>

...

the <p> that is being constructed is an LRE because it is being specified literally inside the template rule. An LRE may contains
attributes, so if you want to give your paragraph a particular attribute value, you can create that value literally, as well, using code
like the following (the attribute and its value are highlighted):

...

<xsl:template match="paragraph">
<p class="interesting">
<xsl:apply-templates/>
</p>
</xsl:template>

...

The preceding template rule will take any <paragraph> element in the input document, create a corresponding <p> element in
the output, associate a @class attribute with the value “interesting” with the <p> element, and process the children of the
original paragraph, inserting the content they generate inside the newly created <p> element.

In the immediately preceding example, where we are labeling all paragraphs as “interesting”, specifying that label as part of the
LRE is all we need. In the two situations described earlier, however, TOC and footnotes, we don’t want every element to have the
same attribute value, so can’t just write the attribute value directly into the LRE, as we did with the uniform
class="1interesting" example. In the TOC, we want each chapter title to point to a different part of the document with a
unique identifier, and in the footnote example we want each footnote to have a unique number, and the associated link to have a
unique value. An AVT lets us construct these attribute values on the fly, adapting the value to the situation for each affected node.

Using an AVT to link from a TOC into the body (and back)

An AVT is created by wrapping some XPath inside curly braces. For example, assuming chapters in our input XML document are
<chapter> elements with unique identifiers in an associated @id attribute (e.g, <chapter id="introduction”>), we can
create TOC links with a template rule like (don’t worry about the @mode attribute for the moment; we’ll cover that shortly):

...

<xsl:template match="chapter" mode="toc">

<xsl:apply-templates select="@id"/>

</1li>
</xsl:template>

———

<1li>
introduction
</1li>

The LRE is output literally except for the part of the attribute value that is inside the curly braces (highlighted in the example
above). That part is an AVT, and instead of being output literally, it is interpreted as an XPath expression (relative to the current
context node, the <chapter> being processed), and the value of the expression is inserted into the attribute value. In this case,
that means that the value of the @1id attribute on the <chapter> element in the input XML document is copied into the output
HTML as part of the value of the created @href attribute. The curly braces are not output themselves; they serve only to delimit
the AVT.

To make the linking work, in the body of the document, where the chapter text itself is printed, you would have to create a target
for the link by using the <a> element with a @hame or @1id attribute. That is, the @href attribute specifies where the user will go
upon clicking the link, and the @name and @1 d identify parts of the document as potential targets to which @href attributes
might point. The XHTML specification prefers @1d, rather than @name, for specifying the target of a link (see
http://www.w3.org/TR/xhtml1/#h-4.10), and in my work I often use both, set to the same value. To make the links bidirectional,
add both @href and @name/@1d attributes to the <a> elements on both ends of the link. In that case:

http://www.w3.org/TR/xhtml1/#h-4.10

 The entry in the TOC might read: 43

———

 :
introduction
</1li> :

...

...

<h2>
introduction
</h2>

Note, though, that the value in the @href attribute begins with a hash mark (“’#") and the value in the @name and @1id attributes
doesn’t. The <a> inside the <11 > in the TOC is called “introduction_toc” and the <a> inside the <h2> in the main body is called
“introduction”. Each points to the other by setting the value of the @href attribute to the value of the @name or @1d of the target,
preceded by a hash mark (“#”).

Using an AVT to humber footnotes and create links

If footnotes are encoded as <fn> elements inside the text, the logical number of each footnote is equal to the number of preceding
footnotes in the document plus one (without the “plus one”, the first footnote would erroneously be considered number zero,
since it has no preceding <fn> elements). The following template rule will create the footnote number in place of the footnote
text:

...

<xsl:template match="fn">
^{<xsl:value-of select="count(preceding::fn) + 1"/>}
</xsl:template>

This uses the XPath count () function to count the number of <fn> elements on the preceding axis (that is, the number that
precede the <fn> being processed at the moment) and adds one to that number. To add a link to the footnote itself, which you'll
render in a set of notes at the end of the page, change the template to:

———

<xsl:template match="fn">
<sup>

<xsl:value-of select="count(preceding::fn) + 1"/>

</sup>
</xsl:template>

...

This sets the value of the @href attribute as the concatenation of the string “note” plus the value of the (highlighted) AVT inside
the curly braces (count (preceding: : fn) + 1).For the first footnote, this will produce:

...

The preceding code inserts the footnote numbers into the main text and makes the links clickable, but you also need to output the
footnotes all together at the end of the page. You can do that by using <xs1:apply templates select="//fn"
mode="fn"/> after you output the main text and then writing a modal template rule to process footnotes differently from the
way they are processed in the main body of the document. As with the TOC, you’ll need to create @name and @1id attributes on the
targets of the links, and you can make the links bidirectional.

An alternative to attribute value templates

Attribute value templates are concise and legible, and they are the strategy we use most in our own work. There is an alternative,
though, the attribute constructor. Instead of specifying the attribute and its value as part of the LRE, you can specify just the
element name as a LRE and then specify the attribute name and value with an attribute constructor. The following template rules
are exactly equivalent, and in both cases it is the highlighted parts that create the @href attribute and set its value:

http://dh.obdurodon.org/modal-xslt.html

D 44
i <xsl:template match="chapter" mode="toc"> |

<xsl:apply-templates select="@id"/>

</1li>
</xsl:template>

...

...

<xsl:template match="chapter" mode="toc">

<1li>
<a>
<xsl:attribute name="href">
<xsl:text>#</xsl:text>
<xsl:value-of select="@id"/>
</xsl:attribute>
<xsl:apply-templates select="@id"/>

</1i>

</xsl:template>

There is, by the way, also an element constructor (<xs'1:element>), which can be used as an alternative to an LRE. See Kay for
details. In most cases LREs with calculated attributes encoded through AVTs will do the job, and there is no need for element or
attribute constructors. They are available, though, as alternatives, and for certain complex types of calculated content they may
provide the only workable strategy. We’d recommend that you:

¢ Learn to use AVTs in your own work.
¢ Remember that element and attribute constructors (<xsl:element>, <xsl:attribute>) exist, but don’t worry about
them unless you run into a computed markup situation that looks like it can’t be resolved any other way.

4/3/2018 XSLT identity transformation
45

<00>—-<dh> Digital humanities

Maintained by: David . Birnbaum (djbpitt@gmail.com)
Last modified: 2018-03-16T22:34:07+0000

XSLT identity transformation

The XSLT identity transformation is used to transform an XML document to itself, that is, to generate XML
output that is identical to the XML input. By itself this is not very useful, since there are more
computationally efficient ways to produce an identical copy of a document. Where it pays off, though, is if you
want to make an almost identical copy, except that you want to introduce a small but systematic change or
two. You can do this by using the identity template to transform everything in the document except the parts
that you want to modify. The result is that you produce a copy of the document that is identical to the original
except that it includes your modifications.

For example, you might have a document filled with sonnets with a structure like:

<sonnet number="I">
<line>From fairest creatures we desire increase,</line>
<line>That thereby beauty's rose might never die,</line>
<l1ine>But as the riper should by time decease,</line>
<line>His tender heir might bear his memory:</line>
<1line>But thou contracted to thine own bright eyes,</line>
<line>Feed'st thy light's flame with self-substantial fuel,</line>
<line>Making a famine where abundance lies,</line>
<line>Thy self thy foe, to thy sweet self too cruel:</line>
<line>Thou that art now the world's fresh ornament,</line>
<line>And only herald to the gaudy spring,</line>
<line>Within thine own bud buriest thy content,</line>
<line>And tender churl mak'st waste in niggarding:</line>
<line>Pity the world, or else this glutton be,</line>
<line>To eat the world's due, by the grave and thee.</line>

</sonnet>

<sonnet>
<number>I</number>
<line>From fairest creatures we desire increase,</line>
<line>That thereby beauty's rose might never die,</line>
<line>But as the riper should by time decease,</line>
<line>His tender heir might bear his memory:</line>
<line>But thou contracted to thine own bright eyes,</line>
<line>Feed'st thy light's flame with self-substantial fuel,</line>
<line>Making a famine where abundance lies,</line>
<line>Thy self thy foe, to thy sweet self too cruel:</line>
<line>Thou that art now the world's fresh ornament,</line>
<1line>And only herald to the gaudy spring,</line>
<line>Within thine own bud buriest thy content,</line>
<line>And tender churl mak'st waste in niggarding:</line>
<line>Pity the world, or else this glutton be,</line>

http://dh.obdurodon.org/identity.xhtml 1/4

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XSLT identity transformation

<line>To eat the world's due, by the grave and thee.</line> 46
</sonnet>

That is, your input has a @number attribute that you'd like to replace with a <number > child of the
<sonnet> element, but you'd like to keep the wrapper <sonnet> element and the internal <1ine>
elements. To make that change you can start with an identity transformation, which applies templates to
every node in the document and tells it to reproduce itself unchanged in the output, except that you also
write a template that handles the numbering specially.

The identity template looks like:

<xsl:stylesheet version="3.0" xmlns:xsl="http://www.w3. org/1999/XSL/Transform">
<xsl:template match="@*|node()"> |
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

The preceding is an entire XSLT stylesheet that transforms a document to itself unchanged. The way it works
is that it matches all attributes (@*) and all other nodes (node (); this includes the document node and all
elements, text () nodes, comments, etc.), makes a copy of those, and then applies templates to any
attributes or other nodes associated with whatever it’s processing at the moment. Since an XSLT
transformation starts automatically at the document node (and because the document node is a node, this
template will match it), you wind up processing everything in the document, moving down level by level
through the hierarchy. Because text () nodes are nodes, too, this also winds up copying all of the text.

There are two subtle details that enable such a simple template to do so much work:

1. The <xs1:copy> element makes a shallow copy. This means that it creates a copy of the node that it is
processing, but it doesn’t do anything with any attributes or child elements or textual content. For
example, if you apply <xs1:copy> toa <sonnet> element in the example above, it will create a
<sonnet> element in the output, but it won’t copy the @number attribute or the <11ine> child
elements. This is why we need to apply templates explicitly inside the <xs1:copy> tags.

2. We have to apply templates to both nodes and attributes. We don’t usually think of it this way, but
because XPath looks by default at the child axis, when we apply templates to node (), we're applying
templates to all nodes on the child axis of the current context (that is, of the element we matched in the
template that is doing the work at the moment). In other words, <xs1:apply-templates
select="node ()" /> is synonymous with <xs1:apply-templates
select="child: :node () "/>.Since attributes are on the attribute axis, and not on the child axis,
this would not apply templates to attributes, which means that attributes on elements in the input
document would be lost during the transformation. To avoid losing them, we have to apply templates to
the union (using the union operator |) of anything on the attribute axis (@*) and any node on the child
axis (node ()).

One more bit of magic is that XSLT templates have precedence rules, which specifies what happens when
more than one template matches a node that is being processed, and we exploit those rules to override the
identity template when we want to change something during the transformation. The most important
precedence rule is that the more specific @ma t ch value wins. Since the @match value of the identity template,
above, is very general (it matches any attribute and any other node), just about any other @match value
would be more specific. What we'll do for our present task, then, is let the identity template take care of
everything in our document except the bits that we want to change. The identity template will match

http://dh.obdurodon.org/identity.xhtml 2/4

4/3/2018 XSLT identity transformation

absolutely everything in the input document, but our more specific template for what we want to chhge will
override it where we need it to.

This simplified example contains just two element types: <sonnet> and <1ine>, but in Real Life you would
have other elements: a root element (perhaps <sonnets>), some metadata, headers or titles, and perhaps
more. We want to leave all of those other element types unchanged, and we also want to leave <1ine>
unchanged, but we want to make two changes to <sonnet>:

1. We want to remove the @humber attribute, and
2. We want to add a <number> child element.

A full XSLT stylesheet to do that would be:

<xsl:stylesheet version="3.0" xmlns: xsl—"http [/ WWW. W3, org/l999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:template match="@* | node()">
<xsl:copy>
<xsl:apply-templates select="@* | node()"/>
</xsl:copy>
</xsl:template>
<xsl:template match="sonnet">
<xsl:copy>
<number>
<xsl:value-of select="@number"/>
</number>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

The identity template matches everything in the input document: the document node, all elements, all
attributes, and all text () nodes. Both templates match <sonnet> elements; the second one matches them
specifically and the identity template matches them because it matches all nodes. This means that the
identity template will be used to make no changes in anything else, but the second template, which has the
more specific @match attribute value and therefore outranks the identity template in case of a tie, will be the
one that gets to handle the <sonnet> element. What the sonnet-specific template does is copy the element
it just matched (that is, create a shallow copy of the <sonnet> element in the output) and then, inside the
element it has just created in the output, create a new <number > child element, the content of which is the
value of the @humber attribute that was on the original <sonnet> we’re processing. Below that new
<number > child element of the <sonnet> we apply templates without a @select attribute, which means
that we apply templates to all of the child nodes of the <sonnet> we’re processing at the moment. Those
child nodes are the 11ne elements of the sonnet, and when we apply templates to them, the identity
template does the processing and just copies them unchanged to the output.

So what happened to the original @number attribute? Attributes are not children because they aren’t on the
child axis; they’re on the attribute axis. This means that in our template that matches <sonnet> elements,
our <xsl:apply-templates/> withouta @select attribute applies templates to all of the children of
the current context (in this case, the <11ne> elements), but not to its attributes. This means that the original
@number attribute disappears because we simply don’t apply templates to it.

The XSLT 3.0 way

The identity template described above does the job well, and you’ll encounter it widely, including in tutorials
and homework answers in this course. But since the advent of XSLT 3.0, there is an alternative way of

http://dh.obdurodon.org/identity.xhtml 3/4

4/3/2018 XSLT identity transformation

describing a default identity operation in a single line:

The new XSLT 3.0 <xs1:mode> element is a top-level element, which means that it’s a child of the root
<xsl:stylesheet> element and a sibling of <xs1:output>and <xsl:template> elements. What this
statement does is overwrite the built-in rules, which would otherwise be that 1) if there’s no template for an
element, throw away the tags and process its children, and 2) if there’s no template that matches text ()
nodes, output the text. This new rule says that if there’s no template for any node (element, text (),
anything else), make a shallow copy of it. It will apply first to the document node, because that’s where XSLT
starts its work, and it will then work its way down the tree. As with the older strategy described above, you
can let this XSLT 3.0 identity rule take care of most of your document, and write explicit rules only for the
stuff you want to change. Our solution above could thus be rewritten as:

<xsl:stylesheet version="3.0" xmlns: xsl—"http [/ WWW. W3, org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:mode on-no-match="shallow-copy"/>
<xsl:template match="sonnet">
<xsl:copy>
<number>
<xsl:value-of select="@number"/>
</number>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

It’s better to use this new XSLT 3.0 version in new stylesheets, but because XSLT 3.0 is fairly young, you'll still
run into lots of examples of the older strategy. Don’t forget, though, that if you use the XSLT 3.0 method, you
should set the value of the @vers-ion attribute on the <xsl:stylesheet> root element to 3.0 and you
should select Saxon-PE or Saxon-EE as your transformation engine. If you don’t do that, you won’t raise an
error in <oXygen/>, but it’s still a mistake; if you're using XSLT 3.0 features, set the value of the @version
attribute accordingly and use one of the XSLT 3.0 transformation engines.

http://dh.obdurodon.org/identity.xhtml 4/4

49

newtFire {dhlds}
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last
modified: Tuesday, 17-Oct-2017 15:26:37 EDT. Powered by firebellies.

XSLT Exercise 1

Our very first XSLT assignment is an Identity Transformation, a kind
transformation we have to do frequently in our projects when we need to make specific changes to
our encoding. We want to make some small changes in our Georg Forster file to make better choices
of TEI elements for some of our tags.

To begin, download the Georg Forster file from here: ForsterGeorgComplete.xml and open it in
<oXygen>. We don’t want to change much about this file, but we do want to alter its tagging just a
little, and that is a good occasion to write an Identity Transformation XSLT, converting our XML to
XML that is meant to be (for the most part) identical to the original.

Here are two changes we want to make to our XML file:

¢ Looking through the file in the Outline view, we notice that our <head> elements inside each
<div type="chapter"> are holding <I> elements, which we originally applied to preserve line
breaks in the original document. But we really should not be using the <I> element, because in
TEI that element is reserved for a line of poetry! We should change our tagging, and we think
we should instead end each line with the self-closing <lb/> element used to record a (non-
poetry) line-break in TEI.

¢ Scrolling through the document, we notice we have used <emph> elements in TEI when we
wanted to indicate a rendering in italics in the original. Just like the problem with the use of
<I>, that was a mistaken application of the TEI (even though it looks perfectly valid), because
the <emph> element is only supposed to be used when a writer is placing strong emphasis on a
word or phrase. In this document, the <emph> elements are being applied to designate non-
English words and book titles, so this tagging is not really for emphasis. We really should be
using the TEI <hi rend="italic"> tagging for these instead, since this element is designated for
highlighting of any kind.

You may already be calculating how to do these tasks with a regular expression Find and Replace,
and while we know you could do that, our purpose with this exercise is to make the changes using an
XSLT transformation, and we hope you will learn some things about how XSLT works through this
exercise!

To begin, open a new XSLT stylesheet in <oXygen> and switch to the XSLT view. We will have
some housekeeping to do as we get started.

Namespaces matter! Setting up an XSLT stylesheet to Read TEI

Georg Forster’s A Voyage Round the World is coded in the TEI namespace, which means that your
XSLT stylesheet must include an instruction at the top to specify that when it tries to match elements,
it needs to match them in that TEI namespace. When you create a new XSLT document in
<oXygen/> it won’t contain that instruction by default, so whenever you are working with TEI you
need to add it (See the text in blue below). We also need to make sure that our XSLT parser
understands it is outputting results to the TEI namespace, so we change one more line (See the text in
red below).Our modified stylesheet template looks like the following:

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://dh.newtfire.org/ForsterGeorgComplete.xml

50

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns="http://www.tei-c.org/ns/1.0"
version="3.0">

</xsl:stylesheet>

Writing the Identity Transformation!

1. We will give you your first template rule, to set this as an identity transformation. We’re going
to use a new form for this in version XSLT 3.0, so that is why we have set version="3.0" in
our stylesheet template above. On future assignments we are setting the default version 2.0 for
tranforming to HTML mostly because the old version is better tested for processing HTML
output, but for an identity transformation of XML to XML, we like the efficient new code we
can write in version 3.0. (You can see an old form here in the first template rule of our Identity
transformation of Shakespeare’s sonnets, which you can download, save and open from here.
That old first rule matches on all nodes, elements and attributes throughout the document and
simply copies them. It’s perfectly fine to use that older template rule in place of the one we
show you below, but we like the simplicity of this new form even better!).
<xsl:mode on-no-match="shallow-copy"/>

This XSLT statement is the opposite of the xsl:template match we have been showing you in
our XSLT tutorial. You basically say, if I do not write a template rule to match an element,
attribute, or comment node, really of any part of the document that I do not mention in a
template match rule, XSLT should simply make a copy of that element and output it. Try
running this and look at your output: it will look exactly identical to the current XML
document. Obviously we do not need to do this unless we want to make changes with template
match rules! There is another way to copy, called "deep copy" in XSLT, but we do not want
use it here. When you use "deep copy" in XSLT, you reproduce the full directory tree
underneath a given element, so the understanding is that we would match on the root element
only, and reproduce all the descendents of that one node just as they are. We like the "on-no-
match-shallow-copy" approach because we do not necessarily want to copy every node just as
it is in the original. We only want to copy if it we do not want to write a new template rule that
will change it.

2. Next, we will simply write our template rules to match on the particular elements we wish to
change. You may wish to start with the simpler of the two, to convert all the <emph> elements
into <hi rend="italics"> in the output XML. Review our Introduction to XSLT to see how to
write a template match on any particular element, and how to output as a different element in
its place using <xsl:apply-templates/>.

3. Now, write the template rule that will match only on <I> elements that are children of <head>
elements. And see if you can figure out how to replace these by positioning the self-closing
line-break element <Ib/>, positioned in the correct spot in relation to <xsl:apply-templates/> so
that the <Ib/> sits at the end of a line.

http://dh.newtfire.org/SonnetIDTransform.xsl
http://dh.newtfire.org/explainXSLT.html
http://dh.newtfire.org/explainXSLT.html

51

4. When we write Identity Transformation XSLTs, we often work with Attribute Value
Templates (or AVT), a handy special format in XSLT that helps us to add attributes to
elements like <p> or <I>, and work with values we calculate. This is the tool we use when we
want to tell the computer to count and calculate line or paragraph numbers to output in an
attribute (like @n or eénumber). An AVT offers a special way to extract or calculate information
from our input XML to output in an attribute value (for example, this lets us come up with a
count () of where the particular line we are processing sits in relation to all the preceding::
line elements ahead of it). You need to look at some examples of AVTs in order to write one
yourself, so for this last task, go and look at the examples in Obdurodon’s Attribute Value
Templates (AVT)_tutorial. After reading the AVT tutorial, write two more template rules to
add @n attributes that automatically number the <div> elements for Books, and the <div>
elements for Chapters. (We would ask you to number the paragraphs, too, but we already did
that!) Hint: For help with teaching the computer how to count these properly, look at my
example ID-transform stylesheet that adds line numbers to a series of sonnets, downloadable
from here if you didn’t download it earlier from the Introduction to XSLT tutorial.) We will
return to this later, since you will be working with AVTs in later XSLT exercises and almost
certainly in your projects.

When you are finished, save your XSLT file and your XML output of the Georg Forster file,
following our usual homework file naming conventions, and upload these to the appropriate place in
Courseweb.

http://dh.obdurodon.org/avt.xhtml
http://dh.newtfire.org/SonnetIDTransform.xsl
http://dh.obdurodon.org/file-naming_conventions.xhtml

52

<00>—-<dh> Digital humanities

Maintained by: David J. Birnbaum (djbpitt@pitt.edu)
Last modified: 2017-03-01T03:20:17+0000

Modal XSLT

One advantage that XSLT provides over CSS is that while CSS can “decorate the tree,” XSLT can rearrange it,
fetching nodes from one place in the input tree and writing them somewhere else in the output tree. A subtle side-
benefit is that not only can XSLT move a node to a new location, but it can output the same node in multiple
locations and treat it differently each time. For example, if your input document has chapters with titles, your XSLT
can create output that formats the titles and the chapters as they might appear in a book, but it can also use the
chapter titles again, differently, to create a table of contents at the beginning of the output document. It does this
by using <xs1:apply-templates/> more than once; in the table of contents it applies templates just to the
titles, while when it is formatting the body it might apply templates to each chapter, and then, within each chapter,
apply templates first to the chapter title and then to the chapter body contents.

Reusing the same input nodes more than once in the output raises the question of how you might treat a node in
different ways when you reuse it. For example, when you output the actual chapters you might want to render the
chapter titles as HTML <h3> elements before the chapter contents, so that they look like large, bold chapter titles.
In the table of contents, though, you might want to create a bulleted list with an HTML element, where each
chapter title gets created inside the list as an HTML <1 > element. How do you write template rules that can
create an <h3> element when needed for a chapter title in the body, and that can also create a <11 > element when
needed for the same chapter title in a table of contents at the front of the output document?

There are several possible solutions to the question of how to reuse parts of the input tree to output them
differently in different locations in the output tree, but the one that is often most convenient is the XSLT @mode
attribute.

XSLT modes

XSLT has a @mode attribute that can appear on <xs1:template>and <xsl:apply-templates> elements.
The @mode attribute can be used to create a separate set of rules for processing titles in the table of contents that
can operate alongside the regular template rules that you might use to output the main text. For example, suppose
your input document is something like:

--

<report>
<chapter>
<title>This is the title of the first chapter</title>
<paragraph>This paragraph is the content of the first chapter. In
real life a chapter would probably have a lot of paragraphs. </paragraph>
</chapter> -
<chapter>
<title>This is the title of the second chapter</title>
<paragraph>This paragraph is the content of the second chapter. </paragraph>
</chapter>
<chapter>
<title>This is the title of the third chapter</title> '
<paragraph>This paragraph is the content of the third chapter. </paragraph>
</chapter>
<chapter>
<title>This is the title of the fourth chapter</title>

mailto:djbpitt@pitt.edu
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.obdurodon.org/
http://dh.obdurodon.org/

<paragraph>This paragraph is the content of the fourth chapter.</p§?agraph>
</chapter> !
</report>

__

__

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="2.0">
<xsl:template match="/">
<html>
<head>
<tjitle>My output</title>
</head>
<body>
<xsl:apply-templates select="//chapter"/>
</body>
</html>
</xsl:template>
<xsl:template match="chapter">
<xsl:apply-templates/>
</xsl:template>
<xsl:template match="title">
<h3>
<xsl:apply-templates/>
</h3>
</xsl:template>
<xsl:template match="paragraph">
<p>
<xsl:apply-templates/>
</p>
</xsl:template>
</xsl:stylesheet>

__

The <xsl:template>and <xsl:apply-templates> elements in this stylesheet have no @mode attribute.
You can now augment the stylesheet by adding additional rules that specify a @mode attribute; you can name the
mode anything you want, and I normally use “toc” for tables of contents.

The rules you add to your stylesheet are highlighted below:

--

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="2.0">
<xsl:template match="/">
<html>
<head>
<title>My output</title>
</head>
<body>
<h2>Contents</h2>

<xsl:apply-templates select="//title" mode="toc"/>

<hr/>
<xsl:apply-templates select="//chapter"/>
</body>
</html>
</xsl:template>
<xsl:template match="chapter">
<xsl:apply-templates/>
</xsl:template>
<xsl:template match="title">
<h2>

<xsl:apply-templates/> 54
</h2>
</xsl:template>
<xsl:template match="paragraph">
< p >
<xsl:apply-templates/>
</p>
</xsl:template>
<xsl:template match="title" mode="toc">
<Ili>
<xsl:apply-templates/>
</11>
</xsl:template>
</xsl:stylesheet>

__

Where we want to generate the table of contents (in this case, before the actual contents), we create the
container that will hold the list of chapter titles. Inside it we apply templates to all of the titles as a way of rounding
them up for processing, but when we apply templates, we specify @mode="toc". The presence of the @mode
attribute on the <xsl:apply-templates> element tells the system to ignore any template rule for <title>
nodes that does not specify the same value for the @mode attribute. The system therefore ignores the regular
(modeless) rule that we wrote for titles, and chooses instead the new one (with mode="toc"), which specifies
that titles should be wrapped <11 > tags.

Meanwhile, when we later process titles a second time, to render each title as an HTML <h2> before the chapter
contents in the body of the output, the old rule applies. The new, modal rules don’t affect the logic of the original
stylesheet; our old, modeless rules continue to work as before, but they are now augmented by modal rules that let
us also generate a table of contents that treats titles differently from the way they’re treated in the main output.

You can have as many modes as you need in a stylesheet and you can call them anything you want. Note also that
you can call a template that is in one mode from inside a template that is in a different mode. In the example above,
the template rule for titles that is in the “toc” mode applies templates to the contents of each title, that is, to the
text () nodes that contain the actual title text, and it doesn’t specify a mode. We can use the regular (modeless
and built-in) template rule in this case because we don’t need to process the text any differently than we do in the
body of the output document. What’s important is that there is no prohibition against calling a modeless template
from inside a modal one or vice versa; whether you specify a mode depends only on the processing you need at
that point in the transformation.

The most common mistake people make with modal XSLT is forgetting to specify the mode value when needed.
Think of XSLT as involving throwing and catching, where <xs1:apply-templates> throws nodes out into the
ether and template rules sit around waiting to catch them as they come by. If you have a rule like <xs1:apply-
templates select="//title" mode="toc"/>,itthrowsthe <title> elements out, but it specifies that
they can be caught only by a template rule that not only matches the correct gi (“gi” is the standard abbreviation
for “generic identifier,” which is XML-speak for what humans would call an “element name”) with
match="title", butalso invokes the correct mode with mode="toc".

55

<00>—<dh> Digital humanities

Maintained by: David J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-03-01T22:49:03+0000

XSLT, part 2: Advanced features

This supplementary XSLT tutorial concentrates on four topics: variables, keys, conditionals (<xs1:1f>and <xs1:choose>), and
the difference between push processing (<xs1:apply-templates> and <xs1:template>) and pull processing (<xs1:for-
each>and <xsl:value-of>).

The <xsl:variable> element

If you've used variables in other programming languages before, be aware that variables in XSLT do not work like variables in most
other languages. The value of a variable in XSLT cannot be updated once the variable has been declared.

The <xs1:variable> element requires a @name attribute, which names the variable for future use. The value of the variable is
typically assigned through a @select attribute (in which case <xs1:variable> is an empty element), but it can also be
specified as the content of the <xs1:variable> (in which case the element cannot have a @select attribute). It’s usually easier
to use @select, since this typically produces less complicated code, but if you need to do anything particularly involved, you may
not be able to use the @select method of assigning your value. To reference a variable later on, just use $variableName, where
variableName is the value of the @name attribute you wrote when creating the variable. That is, when you declare a variable to,
say, count the paragraphs (<p> elements) in your input, you might give it the name “paragraphCount” with something like:

——

..

Note that there is no leading dollar sign associated with the name when you declare and define a variable. But should you later
refer to the variable, you need the leading dollar sign. For example, to get the value of the variable, you might use:

..

__

The <xs1:variable> element may be defined in different locations in the stylesheet, and the location makes a difference. When
you define a variable (that is, use <xs1:variable>) as an immediate child of the root <xs1:stylesheet> element, the
variable can be used anywhere in the stylesheet. When, on the other hand, you define a variable inside a template rule, it’s
available only within that template rule.

We often use a top-level <xs1:variable> element to avoid having to recalculate a value that is used often, as well as to access
the tree from an atomized context (such as when you've used <xs': for-each/>, which we’ll explain when the situation arises).
You might also use variables to avoid typing a long XPath expression within some other complicated instruction. Variables that are
not strictly necessary and that are created for the convenience of the developer are called, not surprisingly, convenience variables.

For more information about variables, see Michael Kay, 500 ff.

The <xsl:key> element

<xs1:key> may be overlooked in situations where comparable functionality is available through other means, but it is often
simpler (and almost always faster) to use <xs1:key> than the alternatives (we once reduced the run time for a transformation
from twenty minutes to just a few seconds by switching to an implementation that used <xs1:key>!). The <xs1:key> element
requires three attributes. Consider, for example, XML structured like:

——

<book>
<title>XSLT 2.0 and XPath 2.0 Programmer's Reference</title>
<author>Michael Kay</author>
<publisher>Wrox</publisher>
<edition>4</edition>

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.obdurodon.org/
http://dh.obdurodon.org/

<year>2008</year> 56
</book>

..

——

..

The three required attributes in this case are:

¢ The @name attribute is the name you’ll use when referring to the key when you need to use it to look up and retrieve a value.
You can make up your own value here, but the syntax we’ve used is a common strategy for reminding the human operator of
what the key retrieves and how it finds what it's looking for.

¢ The @match attribute is an XPath pattern—Ilike the @match on <xsl:template>. Here we say that we want to find
<book> elements. Note that because this is an XPath pattern, and not a full XPath expressions, all we need is the name of the
element. This is similar to specifying an XSLT template rule that is supposed to process <book> elements no matter where
they appear, which would have a @match attribute value of just “book”. In both cases, the key and the template don’t need (=
should not be given) a full path to the elements to which they apply; they just need enough information to know what to
match, and in this case the bare element name will suffice.

¢ The @use attribute is an XPath expression starting at the value of the @match attribute. In this example, we are saying that
we want to find <book> elements by using their child <author> elements. That is, the XPath expression that constitutes
the value of the @use attribute takes the value of the @match attribute as its starting context, so if the value of @matchisa
<book> element, a @use value of “author” means to look at any <author> elements that are on the child axis of <book>
elements.

The @match attribute value of the key is the object (typically an element) that the processor will return when the key is referenced
(see below), while the @use attribute value tells the processor what to use to look up those values. In the example above, you
would be able to use the key to retrieve <book> elements according to their <author> child elements. To retrieve information
with the help of a key, you use the key () XPath function, which takes two or three arguments. The first argument is the name of
the key (matching the @name value from the <xs1 :key> element), and it must be in quotation marks (single or double). The
second argument is the value to look up; for example, in the sample above, if you were to specify “Michael Kay” as the second
argument to the key () function (key ("bookByAuthor","Michael Kay")), youwould retrieve all <book> elements with
<author> children that have the value “Michael Kay”. The (optional) third argument is the document root of the document in
which to look. When the third argument is omitted, the function searches in the current document. For further discussion of
<xs1:key>, consult Michael Kay, page 376.

Conditionals

<xsl:if>

<xs1:1f>is useful when you have one particular feature whose value may sometimes require special treatment. For example,
you might use <xs1:1if> to colorall <speaker> elements with the @who value “Hamlet” differently from all other <speaker>
elements. <xs1:1f> takes arequired attribute @test, which takes a Boolean argument (that is, the attribute value has to
describe a test that evaluates to either “True” or “False”) just like a predicate expression in XPath. The contents of the <xs1:1f>
element, then, describe what the system is to do if the result of @t est is True: for example, you might want to apply templates or
use <xsl:value-of> to display the results of a particular function, or you might want to create a special @c1ass attribute value
(if you are generating HTML) using <xs1:attribute> that can be styled with CSS (see our Using and @class to style
your HTML to refresh your memory about the @c1ass attribute). Consider:

——

<xsl:template match="sp">

<p>
<xsl:i1f test="speaker='Hamlet'">
<xsl:attribute name="class">mainCharacter</xsl:attribute>
</xsl:i1f>
</p>."

</xsl:template>

__

In this example we are checking each <sp> (because we’re doing this inside the template rule for <sp> elements) to see whether
its child <speaker> (remember that we default to the child axis) is equal to the string “Hamlet”. If the result of this test is True,
we’ll go on to perform whatever is inside <xs1:1f>. If it isn’t, we'll throw it away and won’t do anything special with it. In this
case, everywhere this test is True we’ll create an attribute using <xs'l1:attribute>, and we use the @name attribute to specify

http://dh.obdurodon.org/class-and-span.html

what name this attribute should have: in this case we’re creating the attribute @c1ass. This attribute gets attached to tAé parent
element: in this case, <p>. The contents of <xs1:attribute> indicate the value to be assigned to this new attribute: in this case
the value of @sty1e will be “mainCharacter”. This means that anywhere there’s a speech by Hamlet, we’'re mapping it to
something like:

.mainCharacter { color: red; }

__

any <p> element that contains a speech by Hamlet will have this attribute and will now be colored red.
<xsl:choose>

Although <xs1:1f> can be useful, sometimes we need to code for multiple possible environments, or we care about what should
happen when the results of our conditional are False, and this is where <xs1:choose> comes in. <xs1:1f> can run only one
test and can have only two results: True or False. On the other hand, you can use <xs1:choose> to specify a number of different
conditional environments, as well as a fallback action if none of the conditions is true. <xs1: choose> takes at least one child
<xs1:when> element (and up to as many as you want) and one optional <xs1:otherwise> element. <xs1:when> requires
the same @test attribute that we discussed above. Since <xs1:otherwise> is the fallback condition, it doesn’t take this @test
attribute; it only applies when all <xs1 :when> tests return False.

——

<xsl:template match="sp">
<p>
<xsl:choose>
<xsl:when test="speaker='Hamlet'">
<xsl:text>[Hi, Hamlet!] </xsl:text>
</xsl:when>
<xsl:when test="speaker='Ophelia'">
: <xsl:text>[Hi, Ophelia!] </xsl:text> :
: </xs1:when>
: <xsl:otherwise> '
| <xsl:text>[Neither Hamlet nor Ophelial </xsl:text> |
: </xsl:otherwise> g
: </xsl:choose> !
: <xsl:apply-templates/>
</p>
</xsl:template>

__

In this example, we have two tests (<xs1:when>) and one fallback (<xs1:otherwise>), which is used if neither test returns
True. The first test checks whether the child <speaker> element (remember that we’re in the template rule for <sp>) is equal to
“Hamlet”. If it is, we use the <xs1: text> element to create a text () node with the content “[Hi, Hamlet!] ”, which means that
we return the plain text: “[Hi, Hamlet!] ”. The second test works along the same lines, except that it checks whether the child
<speaker> is equal to “Ophelia”. If this test is True, then we return plain text reading “[Hi, Ophelia!] ”. If neither of these tests
returns True (that is, if the speaker is anyone other than Hamlet or Ophelia), then the <xs1:otherwise> condition kicks in. In
this case, that means that we return the plain text “[Neither Hamlet nor Ophelia] ”. Note that we’ve put in a space at the end of each
of these strings of plain text, because we apply templates at the end of this block of conditionals in order to output the speech, and
we want a space before it. If you run this code, your output should look like this (we've added bolding to the speaker names to
make them easier to see here):

\ [Neither Hamlet nor Ophelia] Osric: It is indifferent cold, my lord, indeed. :

[Hi, Hamlet!] Hamlet: But yet methinks it is very sultry and hot for my :
{ complexion. :

The examples above of <xs1:if>and <xs1:choose> came from the following stylesheet, which is included in its entirety for
your reference. It outputs all of the speeches in Bad Hamlet normally, but we have the system do some extra formatting depending

on whether the speaker is Hamlet, Ophelia, or anyone else. If you use it to transform the play, you'll see how the formattg works,
and how new content is created before each speech.

..

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="3.0"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns="http://www.w3.0rg/1999/xhtml1">
<xsl:output method="xml" indent="yes" doctype-system="about:legacy-compat"/>
<xsl:template match="/">
<html>
<head>
<title>XSLT conditional practice</title>
</head>
<body>
<h1>XSLT conditional practice</hl>
<xsl:apply-templates select="//sp"/>
</body>
</html>
</xsl:template>
<xsl:template match="sp">

<p>
<xsl:if test="speaker='Hamlet'">
<xsl:attribute name="class">mainCharacter</xsl:attribute>
</xsl:if>
<xsl:choose>
<xsl:when test="speaker='Hamlet'">
<xsl:text>[Hi, Hamlet!] </xsl:text>
</xsl:when>
<xsl:when test="speaker='Ophelia'">
<xsl:text>[Hi, Ophelia!] </xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>[Neither Hamlet nor Ophelia] </xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:apply-templates/>
</p>

</xsl:template>
<xsl:template match="speaker">

<xsl:apply-templates/>
<xsl:text>: </xsl:text>

</xsl:template>
<xsl:template match="1 | ab">
<xsl:apply-templates/>
<xsl:if test="following-sibling::1 or following-sibling::ab">

</xsl:if>
</xsl:template>
</xsl:stylesheet>

__

Push and pull design

The XSLT processing model supports both push and pull design. The push model, which is what we’ve been using exclusively so far,
relies on <xsl:apply-templates> to identify what is supposed to get processed where, and on <xs1:template> to
describe how it is supposed to be processed. This is called “push” because you push the elements and other components out into
the stylesheet and rely on the templates to grab the individual pieces and process them. For example, you don’t say “take all the
paragraphs and paint them blue”; what you do instead is say in one place “here are some paragraphs; take care of them” and in
another “whenever you happen to run into a paragraph, paint it blue.” The great strength of push processing is that you don’t have
to know the structure of your input document—that is, you don’t have to know which elements will be encountered where. The
declarative template rules ensure that no matter where an element pops up, you'll have a template around that will know what to
do with it. Since the structure of humanities documents involves a lot of variable mixed content, this declarative approach creates a
flexibility that is difficult to achieve with the sort of procedural programming that requires you to know at each moment exactly
what is supposed to happen next.

The pull model, on the other hand, is procedural in nature, and relies primarily on <xs1: for-each> and <xsl:value-of>.It
is useful when you need to round up specific information, instead of dealing with it on the fly whenever it happens to come up. Pull
design is useful for generating tables, for example, where you might want to create a row for each character in a play with columns
for the name and the number of speeches (see the example below). In this case you don’t want to process each speech where it

occurs; you want to go out and grab them all for one character, and then for the next, etc. The pull model would work podtly, on the
other hand, for rendering each speech as it occurs, since it might contain an unpredictable variety of in-line elements, and you
need to be able to deal with those as they arise, without having to know in advance which ones to call for explicitly.

About pull

Pull design is frequently overused by beginning XSLT programmers, especially if they have experience with procedural
programming languages. In many cases the end result of using pull will be the same as the result of using push, but pull design is
often harder to maintain because it is less consistent with the declarative nature of XSLT as a programming language. With that
said, pull design does have its uses. As noted above, the two principal elements used in pull coding are <xs1: for-each> and
<xsl:value-of>.

<xsl:for-each>

The <xs1:for-each> element is used to iterate over a sequence of items (most often elements, but other items, including string
or numerical values, are also permissible). <xs1: for-each> requires one attribute, @select, the value of which can be a full
XPath expression (just like the value of the @select attribute with <xs1:apply-templates>). Whatever @select identifies
becomes the sequence of current context items, so any XPath expressions used in children of <xs1: for-each> begin at the
current context node, not at the document node.

We often use <xs1: for-each> with scalable vector graphics (SVG), which we’ll be introducing later in the semester. It is also
useful for creating a sorted list when used in conjunction with <xs1:sort> (see Michael Kay for details).

<xsl:value-of>

Although the results of <xs1:value-of>and <xsl:apply-templates> are often the same, the real usefulness of
<xs1l:value-of> is that it allows you to output the results of functions and non-node values. For example, if you want to output
a list of unique speakers in a play, the following code will generate an error message:

..

<xsl:for-each select="distinct-values(//speaker)">
<xsl:apply-templates/>
</xsl:for-each>

..

The problem is that you can’t apply templates to an “atomic value” (Michael Kay: “an item such as an integer, a string, a date, or a
boolean”, rather than a node [element, attribute, and a few others]). What you should do instead is:

..

<xsl:for-each select="distinct-values(//speaker)">
<xsl:value-of select="."/>
</xsl:for-each>

__

If you want to do something to every instance of a <speaker> element in a play, though, repeats and all, you should prefer
<xsl:apply-templates>. The difference is that each instance of a <speaker> element is a node in the tree, but the sequence
produced by applying the distinct-values () function to all of the <speaker> nodes is a sequence of atomic values, and not
of nodes.

The following example creates an HTML page that lists the number of speeches by each speaker in Bad Hamlet:

..

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="3.0"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns="http://www.w3.0rg/1999/xhtml1">
<xsl:output method="xml" indent="yes" doctype-system="about:legacy-compat"/>
<xsl:template match="/">
<html>
<head>
<title>Bad Hamlet Speeches</title>
</head>
<body>
<xsl:for-each select="//role">
<p>
<xsl:value-of select="."/>
<xsl:text>: </xsl:text> i
<xsl:value-of select="count(//sp[contains(@who, current()/@xml:id)])"/>

</p> 60
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

__

What's happening here is that we loop through each <role> element in the whole of Bad Hamlet (at any depth, as specified by the
//) and create a <p> element:

..

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns="http://www.w3.0rg/1999/xhtml1">
<xsl:output method="xml" indent="yes" doctype-system="about:legacy-compat"/>
<xsl:template match="/">
<html>
<head>
<title>Bad Hamlet Speeches</title>
</head>
<body>
<xsl:for-each select="//role">
<p>
<xsl:value-of select="."/>
<xsl:text>: </xsl:text> i
<xsl:value-of select="count(//splcontains(@who, current()/@xml:id)])?/>
</p>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

__

..

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns="http://www.w3.0rg/1999/xhtml1">
<xsl:output method="xml" indent="yes" doctype-system="about:legacy-compat"/>
<xsl:template match="/">
<html>
<head>
<title>Bad Hamlet Speeches</title>
</head>
<body>
<xsl:for-each select="//role">
<p>
<xsl:value-of select="."/>
<xsl:text>: </xsl:text> !
<xsl:value-of select="count(//spl[contains(@who, current()/@xml:id)])?/>
</p> H
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

..

——

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns="http://www.w3.0rg/1999/xhtm1">
<xsl:output method="xml" indent="yes" doctype-system="about:legacy-compat"/>
<xsl:template match="/">
<html>
<head>
<title>Bad Hamlet Speeches</title>
</head>
<body>

<xsl:for-each select="//role"> 61

<p>
<xsl:value-of select="."/>
<xsl:text>: </xsl:text> :
<xsl:value-of select="count(//splcontains(@who, current()/@xml:id)])?/>

</p> !

</xsl:for-each>
</body>
</html>

</xsl:template>
</xsl:stylesheet>

..

——

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns="http://www.w3.0rg/1999/xhtml1">
<xsl:output method="xml" indent="yes" doctype-system="about:legacy-compat"/>
<xsl:template match="/">
<html>
<head>
<title>Bad Hamlet Speeches</title>
</head>
<body>
<xsl:for-each select="//role">
<p>
<xsl:value-of select="."/>
<xsl:text>: </xsl:text> :
<xsl:value-of select="count(//sp[contains(@who, current()/@xml:id)]) ”/>
</p>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

..

The predicate here says “get all the <sp> elements in the entire play and check to see whether their @who attributes contain some
substring.” When we're executing an <xs1:for-each> loop, the value of each item in the loop can be represented by

current (). This means that we're comparing the value of the @who attribute of each <sp> element to the @xm1: id attribute of
the <role> element that we're processing at the moment. For example, when we process <role
xml:id="Hamlet">Hamlet</role>, we check the @who attribute of every <sp> in the play to see whether it contains, as a
substring, the value of the @xm1 : id attribute of that <role>. If it does, that’s a speech by Hamlet, so it gets included in our count.
After we've gone through every <sp> and checked who the speaker is, we output the count of the speeches for the <role> we're
looking at at the moment. Then we move on to the next <role>. When we run out of roles, the <xs1: for-each> terminates
gracefully. (Our use of the XPath contains () function is brittle, since it could strike a false positive if, say, there were characters
named both “Ham” and “Hamlet”. In that case we would erroneously identify Hamlet’s speeches as by both Ham and Hamlet. If
false positive substring matches are a risk with your data, more robust methods are available.)

This is the first time you've seen the function current (), and you may be wondering why you can’t write:

——

count(//splcontains(@who, ./@xml:id)])

__

(with a dot instead of current ()). The problem is that the dot refers to wherever you are at that moment in your current XPath
expression. Since you're inside a predicate that is being applied to a preceding <sp>, a dot would check the @xm1 : id attribute of
the <sp>, and not of the <role>. Since the <sp> doesn’t have an @xm1 : id attribute (it's the <role> that does), this wouldn’t
find the matches we care about. That is:

¢ Insidea <xsl:for-each>loop, current () refers to the current item in that loop. In the case of <xs1:for-each
select="//role"> current () will refer to each <role> in turn.

e The dot always refers to the current context in an XPath expression. Inside a predicate, the dot represents the item to which
the predicate is being applied. For example, in

..

//splcontains(@who, ./@xml:id)]

..

we would be testing whether each <sp> has a @who attribute that contains the value of the @xm1 : id attribute offhat same
<sp>. As noted above, this is wrong; we want to look at the @xm1 : id attribute of the <role> elements, and not of the <sp>
ones.

You may find the following distinction helpful: From a technical perspective, current () refers to the current context at the XSLT
level and the dot refers to the current context in an XPath path expression. At the first step of an XPath path expression, the two
mean the same thing. In the example above, when we output <xs1:value-of select="."/> we could instead have said
<xsl:value-of select="current()"/>,since in this simple path the XSLT and XPath contexts are the same. We don’t have
that choice in count (//sp[contains (@who, current()/@xml:id)]),though; here the more complicated XPath includes
a new step, //sp, which changes the XPath context. Here we need to use current () because the XSLT context was set at the
<xsl:for-each> stage, and is unaffected by the comparison. For more discussion, with examples, see Michael Kay, p. 735.

If you try to run this code, you'll notice that it takes a bit longer than usual to finish. That’s because it’s looping through the entire
play repeatedly, looking at every speech once for every role in the play. At 1137 <sp> elements and 37 <role> elements, that’s
42069 comparisons. This is part of why we usually avoid using <xs1:for-each> unless the problem really calls for it, and in
those cases there are ways to speed it up (such as by using a key, as described above).

There are situations that can be managed with either push or pull strategies. In most of those cases, your instinct, unless you are a
veteran XSLT programmer, will draw you toward pull. It's much more common in humanities-oriented XSLT to use push
programming, and where there’s a choice, we’d encourage you to train yourselves to think of push first, and fall back on pull only
where it is truly more appropriate.

63

<00>—-<dh> Digital humanities

Maintained by: David J. Birnbaum (djbpitt@gmail.com)
Last modified: 2016-08-28T20:35:34+0000

Using <xsl:analyze-string>

The <xsl:analyze-string> element uses regular expressions to parse a string of text and identify substrings that match a particular regex
pattern. Kay writes: “It is useful where the source document contains text whose structure is not fully marked up using XML elements and
attributes.”

Consider the following XHTML document (adapted from a page that no longer exists, but that we found a few years ago at
http://ies.sas.ac.uk/cmps/Projects/OUP/index.htm):

———

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>The History of Oxford University Press</title>
<!-- from http://ies.sas.ac.uk/cmps/Projects/OUP/index.htm -->
</head>
<body>
<p>The History of Oxford University Press</p>
<p>This major national and international scholarly project, which will be inaugurated on 1
January 2006, is a co-operative venture between Oxford University Press and the
Institute of English Studies. Its General Editor is Professor Simon Eliot who holds the
newly-created chair in the History of the Book in the Institute.</p>
<p>The History will consist of four volumes which will cover the following periods:</p>
<div>

Volume I 1478-1780s</1i>
Volume II 1780s-1890s</1i>
Volume III 1890s-1960s</1i>
Volume IV 1960s-2000</11i>

</div>
<p>Each volume will be edited by a distinguished scholar in the field and will consist of
chapters written by that scholar and specialists in book history, social and economic
history, history of scholarship and the history of science and technology.</p>
<p>0Oxford University Press will be funding the equivalent of six years of postdoctoral
fellowships in order to provide the fundamental research on which the History will be
based. These fellowships will most likely be divided up in the following way:</p>

<div>

A three-year postdoctoral fellowship on the economic and business history of
the Press.</1i>
A one-year postdoctoral fellowship on the impact of technological and
communications revolutions on the Press.</1li>
A one-year postdoctoral fellowship on the origins and development of OUP's
branches in the USA and Canada.</1i>
<1li>A one-year postdoctoral fellowship on the origins and development of OUP's
branches in South East Asia.</1li>

</div>

<p>It is intended that appointments will be made to these fellowships in 2006 and 2007.</p>

<p>In addition, a major Book History research seminar series focusing, though not
exclusively so, on the History will be established. It is hoped that this will involve
members of the History and English faculties at Oxford, and members of the Institute of
Historical Research and the Institute of English Studies in the School of Advanced Study
in the University of London. Monthly meetings will be held alternately in Oxford and
London and will be open to all.</p>

<p>Updates and progress reports on this ambitious and exciting project will be posted on the
Institute web site from time to time.</p>

</body>
</html>

This document contains years, which are four-digit numbers, but they haven’t been tagged as years. If, for example, we want to make the years
clickable links that will take us to a place where we can look up what happened in that year, we'll need to insert the markup. This is the sort of
not-fully-marked-up text that Kay had in mind, and we can add the markup we want by using a modified identity transformation and
<xsl:analyze-string>. For the purpose of this exercise, we're going to use a resource at http://www.historyorb.com/dates-by-year.php
that allows us to look up whatever happened in a particular year by going to, for example, http://www.historyorb.com/events/date/1960
(replacing the “1960” in the example with whatever year we care about). What we want, then, is for each year in the input document to create a
link in the output document that will let us click on the year and look it up at this site. To simplify our task, we’'ll cut a few corners: we’ll treat

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.historyorb.com/dates-by-year.php
http://www.historyorb.com/events/date/1960
http://www.obdurodon.org/
http://dh.obdurodon.org/

every year reference as a single year (for example, when the text says “1960s” we’ll just look up 1960), we won’t check for missing y84rs (which
means that we might get an error message should we happen to look up a year that isn’t represented at http://www.historyorb.com because
nothing of interest happened then), and we’ll assume that all four-digit numbers are years and all years are later than the year 999, that is, that
all years are four-digit years. In Real Life we’d have to evaluate whether those were sensible assumptions given our data, and if not, we’d have to
decide how to cope.

Here’s our stylesheet (discussion follows):

———

<xsl:stylesheet xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xpath-default-namespace="http://www.w3.0rg/1999/xhtml" version="2.0">
<xsl:template match="*">
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
<xsl:template match="text()">
<xsl:analyze-string select="." regex="\d{{4}}">
<xsl:matching-substring>

<xsl:value-of select="."/>

</xsl:matching-substring>
<xsl:non-matching-substring>
<xsl:value-of select="."/>
</xsl:non-matching-substring>
</xsl:analyze-string>
</xsl:template>
</xsl:stylesheet>

We begin with the identity transformation, and because our input document has no attributes, we’re using a simplified template that doesn’t
need to match attributes (in the @match attribute of the <xs1: template> element) or process them (in the @select attribute of the
<xsl:apply-templates> element). Because we're writing a separate rule for text () nodes (since we need to parse them to look for
dates), our basic identity template has to match only elements, which we can do with an asterisk, which means “any element.”

Our other template rule processes text () nodes. When we match a text () node, we invoke the <xs1:analyze-string> element, passing
it something to parse (the text () node we just matched, represented by the dot, since it’s the current context node) and a regular expression
that will be used to parse it. The regular expression in this case, regex="\d{{4}}", is designed to match any four-digit number. Let’s look at
the pieces:

¢ The \d matches any single digit.

¢ In addition to the general repetition indicators that we’ve been using since we learned about Relax NG (question mark, asterisk, plus sign),
regex syntax lets us specify an exact number of repetitions or a range of repetitions. To specify an exact number of repetitions, we follow
whatever we’re counting with an integer in curly braces, so \d {4} would match exactly four digits. (There are also ways to specify just a
minimum number of matches, just a maximum, or both.)

¢ Regex syntax requires that the number of matches appear in curly braces, but in the <xs1:analyze-string> context, the regex
attribute is an attribute value template (AVT), which means that anything that appears in curly braces would be interpreted not as part of
regex syntax, but as an XPath expression. We need, therefore, to escape the curly braces by doubling them; this tells the AVT analyzer that
it should pass real curly braces to the regex analyzer, which then recognizes them as saying “match a digit exactly four times in sequence,”
that is, match a four-digit number.

The <xs1:analyze-string> element normally takes two child elements, <xs1:matching-substring>and <xsl:non-matching-
substring>. As the element name implies, once the <xs1:analyze-string> parser breaks the string into parts that match the regex and
parts that don’t, one or the other of these subelements handles each of those parts. In our stylesheet, for a non-matching substring (any string of
text inside the text () node thatisn’t a four-digit number), we just output the value of that substring using the <xsl:value-of> element.
For any substring that matches, we create an HTML link (<a>) and insert the appropriate value for the @href attribute, using an AVT to plug in
the four-digit number that we matched. Note that within <xs1l:matching-substring>and <xsl:non-matching-substring>,adot
refers to the specific substring, and not to the entire text () node.

Here’s a snippet of the output:

———

<p>This major national and international scholarly project, which will be inaugurated on 1 January

2006, is a co-operative venture between

Oxford University Press and the Institute of English Studies. Its General Editor is Professor Simon Elnot
who holds the newly-created chair in the History of the Book in the Institute.</p> '

Note that the four-digit year is marked up as a link to the http://www.historyorb.com site, but the one-digit part of “1 January 2006” is not.
Similarly:

———

Volume I 1478-
1780s </1i>

http://www.historyorb.com/
http://www.historyorb.com/

Here the four-digit years are tagged even when they are part of an expression like “1780s”.

66

newtFire {dhlds}.
Authored by: Rob Spadafore (spadafour at gmail.com) Edited and maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu)
Last modified: Sunday, 06-Aug-2017 18:15:26 EDT. Powered by firebellies.

Guide to Schema Writing with Schematron

As we learned in the Relax NG tutorial, we write and associate schema to constrain the content of an XML document. This helps
if you are working with many complex files or trying to coordinate a team of coders to maintain consistency across an entire project. Relax NG is a
grammar-based schema language, which means that it defines the hierarchical relationship of elements and attributes in an entire document from its
starting root to all its branches. It may seem like Relax NG ought to be able to govern everything we need, but there are certain kinds of constraints that
it can’t handle. For these we apply a rule-based schema to function alongside our grammar-based schema in order to fine-tune precise relationships
among elements and attributes. We work with Schematron, a rule-based constraint language that uses XPath expressions to assert or report on the
presence or absence of patterns. Rule-based schema languages like Schematron typically do not constrain every element and attribute like our Relax NG
Schemas. Instead, when we write Schematron, we usually concentrate on just a few things that we need to control very precisely, as we will show you
here.

Relax NG and Schematron are commonly used together. For example, let’s say we are collecting data from 100 people and want to record their votes
for their favorite ice cream flavor: vanilla, chocolate, or strawberry. Limiting our attributes to those three flavors and defining the responses as integers
would not be difficult using Relax NG. But what if, instead of 31 votes for chocolate, I accidentally entered 131 votes? A basic Relax NG schema that
defines the element vote this way vote = element vote {type, xsd:integer} and type = attribute type {"chocolate" | "vanilla" |
"strawberry" } wouldn’t catch any problems with the specific numbers I enter, because the data type for integer is not something we can set to specific
numerical values in relation to a total. If we want to make sure that the numerical values of all <vote> elements add up to 100, Schematron is the tool we
need. More generally, we use Schematron if we need to define rules that assert relationships in the content of our elements and attributes, such as (among
other things) to make sure that the preceding-sibling::header does not contain the identical text of a following-sibling header, to check that elements
holding page number values appear in the correct order, or to flag every time we are missing a punctuation mark that is supposed to appear inside a
sentence element.

Superstructure and namespaces (the stuff at the top of the document)

‘When you open a new Schematron file in <oXygen/>, you will see the following superstructure:

<?xml version="1.0" encoding="UTF-8"?>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process">

</sch:schema>

We will first add some namespace information that will dictate how we represent the elements in a) the Schematron document we are writing, and b) the
XML document it will constrain if that XML document is in a special namespace. We typically set the Schematron namespace as a default. (Without
this line, we would have to type sch:, a namespace prefix , in front of all of our Schematron elements, so we really prefer to use it.) Paste the line bolded
in red below into your new Schematron:

<schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
xmlns="http://purl.oclc.org/dsdl/schematron">

</schema>

If the XML document(s) you’re trying to constrain are in a specific namespace, such as the TEI, you must identify that namespace with an empty
element called <ns/>, and you will also have to use a namespace prefix when representing the XML elements in your schema rules. The next box shows
how to define the TEI namespace and its special namespace prefix. If you are writing Schematron to govern TEI XML and you don’t define your
namespace, or if you forget to use a prefix to point out the elements that belong to that namespace, the Schematron’s rules simply will not fire when you
associate it with your TEI document(!)

<schema xmlns:sch="http://purl.oclc.org/dsdl/schematron”" queryBinding="xslt2"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
xmlns="http://purl.oclc.org/dsdl/schematron">
<ns uri="http://www.tei-c.org/ns/1.0" prefix="tei"/>

</schema>

About namespaces: Documents are in a namespace or in no namespace, as signaled in their root element. We can see in the code above that a
Schematron document has a special xm1ns (or XML namespace) attribute that seems to point to a web address. This is not really a website (though
sometimes developers put up placeholder websites at namespace URISs): it's simply a unique uniform resource identifier (that is what URI stands for) and
it is simply a unique string of characters used to identify the Schematron namespace. The TEI has its own namespace URI too, and so do other forms of
XML (like XSLT) that we are presenting in this course. If your input document is in the TEI namespace (that is, the root element is <TEI
xmlns="http://www.tei-c.org/ns/1.0">, you have to include the <ns uri="http://www.tei-c.org/ns/1.0" prefix="tei"/>element we
illustrated above in your Schematron and you must use the tei: prefix before all references to elements (but not attributes) from the input TEI
document in your Schematron file. That means you need to write //tei:body/tei:div and not just //body/div. Attributes are special because they
exist in no namespace, so they do not take a prefix (and you will not be able to find them if you apply the prefix). So if we are looking for eref
attributes on TEI <div> elements, we would write: //tei:body/tei:div/@ref. You can think of this as a magic incantation that’s needed for
Schematron to match just the elements in the TEI document, but if you’d like more explanation of how namespaces work, see
http://www.w3schools.com/xml/xml_namespaces.asp.

The skeleton of a Schematron rule
Pattern, Rule, and Context

Each new schema rule starts with a <pattern> element. Inside the <pattern> is a <rule> element with an @context attribute. It looks like this:

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html

67

<pattern>
<rule context=" ">

</rule>
</pattern>

We can set as many rules as we wish inside a pattern element, which simply works as a convenient organizing structure for you to put related rules
together. A pattern element may contain one or multiple rule elements as you wish. A rule element must have a @context attribute that is distinct
from other rule elements in your Schematron file. The value of @context is the specific place in your XML document where the rule applies. (When
you have associated your Schematron file with your XML and do validation checking in <oXygen/>, the XPath pattern defined by your @context is
where <oXygen/> will mark a validation error triggered by a test of your Schematron rule.) The form this takes is called an XPath pattern and we also
use it in XSLT: it is a pattern of elements and/or attributes set in relation to each other that might appear at any level of your document hierarchy: For
example, if you write the XPath pattern p/said as the value of @context, rule context will apply to any <said> elements within a <p> element
positioned at any level in the XML document hierarchy, whether the parent p element is sitting inside a TEI header in an outer level of the hierarchy or
deeply nested inside a note element inside another body p. XPath pattern expressions let us locate particular patterned relationships wherever they sit
in the document hierarchy so they can be a powerful tool to keep our Schematron and XSLT code tidy and efficient. Why is this more efficient? Because
we do not have to write the same rule for said elements over and over again depending on the different XPath positions of p, and we may save computer
parsing time by not starting our searches over and over again from the document node were we to begin with //p/said. Constructing an XPath pattern,
p/said takes advantage of the relational patterns that rule-based schema languages are designed for. XPath patterns can also be set to use predicates, so
that, for example, said[@who] matches on any <said> elements that have ewho attributes anywhere they are sitting in our XML document.

Assert or Report

The <assert> or <report> element is the heart of each Schematron rule. Within each <rule> element we can set one or more <assert> Or <report>
elements, which contain an attribute called étest. With all of these pieces together, here is the basic skeleton of a Schematron rule using <assert>:

<pattern>
<rule context=" ">
<assert test=" "> </assert>
</rule>
</pattern>

The value of etest is a literal XPath statement defined in immediate relation to the current XPath location of écontext, wherever this is. The @test sets
a condition for the True or False value of something you write here: For example, does particular string pattern exist here? Does the numerical value of
this equal the preceding::sibling of the current context? Imagine the current context to be shifting with each discovery of the XPath pattern. As the
validation checker lands on each new instance, it runs your etest and checks for some condition, true or false, that hinges on that pattern in some way.
Basically, econtext tells <oXygen/> where to look, and etest tells <oXygen/> what to test when it gets there. You then type a message, your very own
customized validation error message, inside the <assert> or <report> element as its text content, and explain (to yourself and/or your project team) the
reason the rule is firing. When a rule fires, it will generate an alert message in <oXygen/> just like a message from Relax NG, although in Schematron,
it’s your own custom-made message that fires.

Writing the rules
An assert rule

Okay, now that we understand the structure, let’s construct some sample rules so we understand how and why they function. Let’s say you’re keeping
track of points in a game where the goal is to get as many points as possible. The person in first place got 23 points, second place got 16, and third place
got 12. Let’s construct a basic XML document to store the results:

<gameResults>
<first>23</first>
<second>16</second>
<third>12</third>

</gameResults>

In our very simple example, the first place score should always be more points than the second place score. Let’s write a Schematron rule to make sure
the values are entered correctly. First, let’s start by writing the <pattern>, <rule>, and @context. We want the rule to fire (or alert the user) on the
<gameResults> element.

<pattern>
<rule context="gameResults">

</rule>
</pattern>

Now, we want to write the rule. We want to assert (or say definitively) that the first-place score must always be greater than the second-place score. This
means that the rule will fire when the defined assert test fails.

<pattern>
<rule context="gameResults">
<assert test="number(first) gt number(second)">The first-place score must be greater than the second-place scor
</rule>
</pattern>

When we associate our schema, if we have entered 116 instead of 16 for the second place score, our schema will fire an error because what we typed fails
to fulfill our Schematron assert test. Notice that we need to use an Xpath number () function for our rule to treat the contents of the first and second
elements as a numerical value to be compared. Note: XPath functions that return numerical values are frequently used in Schematron for comparison
tests. Some of these functions operate over text content that needs to be converted to numbers as we did here, and some of them calculate and measure
things (like string-length() to return a numerical value. Here are the standard wyas to indicate comparisons in XPath and Schematron:

e equality: eq or =
e greater than: gt or >
o greater than or equal to: ge

http://dh.newtfire.org/gameResultsSch.xml

68

e Jess than: 1t or <
o less than or equal to: le
¢ not equal to: ne or !=

A note on inconsistency between Relax NG and Schematron: Even if you write a Relax NG schema as we did for our gameResults.xml file to define
and xsd:integer data type for the element contents of first, second, and third, we discover that our Schematron still reads the contents of those
elements as a string of text until we convert them to a number in XPath. The Relax NG grammar constructs a numerical data format, then, that is
nevertheless not read as a number by an XPath parser unless it is prompted to do so. (We provide links to our sample Relax NG and Schematron files so
you can test this for yourself.)

A report rule

Now that we have a working schema rule to test the difference between the first- and second- place scores, let’s make a rule that tests the second- and
third-place scores. The rule is essentially the same (the second-place score is always greater than the third-place score), but we’ll use the report element
instead to demonstrate how it works. We must add a new test within our rule since it shares the same @context in the gameResults element. Note: If we
attempt to define a new rule with the same:@context as the first, one of the two rules will be applied and the other ignored! So within a given rule
@context, we need to define all our assert and report tests together.

When we write a report element, we are saying to tell us (flag or report) when a particular condition in an @test is met. The difference between assert
and report then, is that an assert test fires and error when its assertion is violated, while a report test fires and error when its condition is met. In this
case, we call for a report when the second-place score (or current context) is less than or equal to the third-place score. Using report in our second test
in the example below, the rule will fire when these conditions are met.

<pattern>
<rule context="gameResults">
<assert test="number(first) gt number(second)">
The first-place score must be greater than the second-place score.
</assert>
<report test="number (second) le number(third)">
The second-place score must be greater than the third-place score.
</report>
</rule>
</pattern>

Here is another way we might write that report statement, to illustrate how we might use the XPath function not () wrapped around a test value:

<report test="not(number(second) gt number(third))">
The second-place score must be greater than the third-place score.
</report>

Associating a Schematron schema with your XML and testing it

Associating a Schematron schema is a lot like associating a Relax NG schema. While viewing your XML document, in the taskbar, click on Document -
> Schema -> Associate Schema. From there, locate your schema file (the file extension should be .sch). When you associate a .sch file, <oXygen/>
should automatically set the schema type to Schematron. A note on mindful file management: Remember to save your Schematron in a directory where
you can easily and consistently locate it. Finalize that, and <oXygen/> should insert a superscript that looks like this:

<?xml-model href="your_ file_name.sch" type="application/xml" schematypens="http://purl.oclc.org/dsdl/schematron"?>

If you also have a Relax NG schema associated, you will have two different schema lines at the top of your XML document. The two different kinds of
schema will function together so that as you code the red square in <oXygen/> will appear as validation errors. The bottom window will feature
messages associated with these validation errors, and this will include the messages you write in the text content of your Schematron assert and report
elements.

When you associate your schema, always tinker with your XML to create conditions that will cause your Schematron rules to fire! Testing your schema
code should be a back-and-forth process to ensure that your assert and report tests are functioning as you want them to.

More information and examples

Wendell Piez and Debbie Lapeyre’s Introduction to Schematron: a very detailed and engaging tutorial with many examples.

Obdurodon’s Examples of Schematron from our projects: See if you can figure out Schematron rules that would constrain the sample cases
described here.

Obdurodon’s Using Schematron in editing: See if you can work out a Schematron code that would constrain the XML as described here.
Obdurodon’s tutorial on Validating references with Schematron

Digital Mitford project Schematron: examples of how to validate @ref attributes with a list of standard xml:ids

Amadis in Translation project Schematron: a wide range of sample rules to study.

The Schematron website

http://dh.newtfire.org/gameResults.rnc
http://dh.newtfire.org/gameResults.sch
http://www.mulberrytech.com/papers/schematron-Philly.pdf
http://dh.obdurodon.org/schematron-class-01.html
http://dh.obdurodon.org/schematron-class-02.html
http://dh.obdurodon.org/schematron-skyrim.xhtml
https://github.com/ebeshero/ebeshero.github.io/blob/master/MRMValidate.sch
https://github.com/ebeshero/Amadis-in-Translation/blob/master/XML-and-Schematron/Amadis.sch
http://www.schematron.com/

4/3/2018 Validating references with Schematron
69

<o00>—-+<dh> Digital humanities

Maintained by: David]. Birnbaum (djbpitt@gmail.com)
Last modified: 2017-04-10T13:50:02+0000

Validating references with Schematron

The text

This activity uses Skyrim (http://dh.obdurodon.org/skyrim.xml), a small text originally prepared by a former participant in our course. The
file has a <cast> element at the top that contains, as child element, a list of characters (<character> elements) and factions (<faction>
elements) that are mentioned in the <body> section, below the <cast> element. For this activity we are going to ignore characters initially
and concentrate only on factions.

An entry for a faction in the cast list looks like:

———

...

———

Note that we use the <faction> element differently inside the <cast> element (where it has a unique @id attribute, plus other attributes
we will ignore for now) and inside the <body > element (where it has a @ref attribute). Any mention of a <faction> element in the body
must point to a matching <faction> element in the cast list. The way the pointing happens is that a <faction> element in the body always
has a @ref attribute, and the value of that @ref attribute should point to (= match the value of) the @1d attribute of some <faction>
element in the cast list. In other words, 1) there should be no <faction> element in the body that does not point to a <faction> element in
the cast list, and 2) there should be no <faction> element in the cast list that is not pointed to by at least one <faction> element in the
body. The attribute that does the pointing is the @ref on the <faction> element in the <body>; the target of the pointing is an @id
attribute on a <faction> element in the cast list.

You can assume that the developer has used a Relax NG schema and declared that the @1d attribute is of type xsd : ID, that is, that it is an XML
id. That means that it has certain properties, including constraints on the characters that it can contain and the fact that it is unique in the
document. You can also assume that your Relax NG schema verifies that all <faction> elements in the cast list have an @1d attribute and all
<faction> elements in the <body> have a @ref attribute.

How a developer could screw up

There are at least two ways a developer could mangle these cross-references:

1. It’s possible to encode a <faction> element in the body with a @ref attribute that doesn’t point to (that is, correspond to) the @id
attribute of a <faction> element in the cast list. For example, the @id attribute might be on a <character> element in the cast list,
instead of on a <faction> element, or there might be no corresponding @1id attribute at all.

2. It's possible to encode an unused <faction> element in the cast list, that is, one that is not pointed to by the @ref attribute of any
<faction> element in the body. Since the inventory of factions in the cast list is supposed to summarize which factions occur in the
body, such an error would bring the list out of sync with the reality of the body.

The task

We want to write a Schematron schema that will guard against the types of error described above by checking for consistency in two ways:

1. We want to write a rule for <faction> elements in the cast list to verify that all factions mentioned there also occur in the body. That is,
there should be no faction listed in the cast list that is not also present in the body.

2. We want to write a rule for <faction> elements in the body that verifies that they have a @ref attribute that points to an @id attribute
ona <faction> element in the cast list. Note that it isn’t enough to check for the existence of a corresponding @1id attribute, since there
are @id attributes on <character> elements in the cast list, and not only on <faction> elements. Not only must the @1d exist, but it
must be associated specifically with a <faction> element in the cast list, and not with a <character> element.

Our solution

http://dh.obdurodon.org/schematron-skyrim.xhtml 1/4

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/skyrim.xml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 Validating references with Schematron

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
xmlns="http://purl.oclc.org/dsdl/schematron">
<pattern>
<let name="cast-factions" value="//cast/faction/@id"/>
<let name="body-factions" value="//body//faction/@ref"/> :
<rule context="cast/faction">
<assert test="@id = $body-factions">The @id "<value-of select="@id"/>" occurs in the cast}
list, but not in the body.</assert> :
</rule>
<rule context="body//faction">
<assert test="@ref = $cast-factions">The @ref "<value-of select="@ref"/>" occurs in the
body, but not in the cast list.</assert>
</rule>
</pattern>
</schema>

We begin by setting some convenience variables. What we mean by convenience variable is that we don’t have to use them (we could have put
the XPath expressions directly in the @test attributes), but they make our code more legible. $cast-factions is a sequence of all @1d
values for all <faction> elements in the cast list. §body-factions is a sequence of all @ref attributes for all <faction> elements in the
<body>. (We could have used distinct-values () to getrid of the duplicates in the list of @ref values, but they do no harm in the tests
we're running, so we just left them in. There cannot be any duplicates in the list of @1d values because we have declared them as type xsd: ID
in our Relax NG schema.)

The first rule fires on each <faction> element in the cast list. It checks whether the @1d attribute value for that element matches the value of
any of the @ref attributes on <faction> elements in the <body>. If not, it reports an error. To make the report more informative, we use the
Schematron element <value=-of> to print the offending value.

We use general equals (=) for this test, rather than value comparison (eq). General equals takes two sequences of any length and tests whether
any member of one is a member of the other. If so, the test succeeds—no matter how many members of the sequence don’t match! We have a
sequence of one item on the left (the @id of the <faction> in the cast list that we're testing at the moment, and it qualifies as a sequence in
the XPath sense even if it’s a sequence of one item) and a sequence of many items on the right (all @ref values on all <faction> elements in
the <body>), this test will succeed whenever the @1d we're examining has a matching @ref. This type of one-to-many general comparison is
very common in digital humanities coding. (Value comparison with eq does only one-to-one comparison, so if you try eq here, you'll get an
error message because there is a sequence of more than one item on the right side.)

The second rule does the reverse. It fires on every <faction> element in the <body> and checks whether the value of the @ref attribute
matches the value of an @1d attribute on a <faction>element in the cast list.

An alternative that works

We could have hung the rules on the @id and @ref attribute values instead of on the <faction> elements that are their parents (making the
necessary modifications to the paths in the code), and there’s no particular reason to favor one of these strategies over the other.

Alternatives that don’t work

It's possible to write rules that fire on <cast> or even on <skyrim> and that run one check of the entire document. This is much harder to
code, although it can be done, but it’s also less informative, since it doesn’t associate the error message with a specific offending element. Even
if you manage to poke the offending value into the error report, the red squiggly line will show up on <cast> or <skyrim>, so you’ll have to
work a bit harder to find the element you need to fix.

Some students in past semesters tried to run a single, global test on <cast> or <skyrim> just to count the number of @id values on
<faction> elements in the cast list and compare that number to the count of distinct values of @ref attributes on <faction> elements in
the <body>. That's not a tenable strategy because if, say, the factions in the cast list are “A”, “B”, and “C” and the ones in the <body> are “X”,
“Y”, and “Z”, there are three of each, but they don’t correspond, you would want that to be reported as an error, and you can’t do that just by
counting them.

So how about <character> elements?

One might think one could use the same type of validation to check for cross-references on <character> elements: is every character
mentioned in the cast list also encountered in the <body> and does every character mentioned in the <body> have a @ref attribute that
points to the @id attribute of a <character> element in the cast list? This turns out to be harder than with factions because there are
elements in the body like:

———

http://dh.obdurodon.org/schematron-skyrim.xhtml 2/4

4/3/2018 Validating references with Schematron

The problem here is that there is no <character> element in the cast list with an @i d attribute whose value is “hero Jauffre MartihSeptim”.
Instead, this is a pointer to three separate characters in the header. The strategy for checking coreference therefore has to involve breaking
apart the @ref attribute and checking each of the three pointers separately. This is the sort of task for which the XPath tokenize () function
was created.

There is a hypothetical parallel problem concerning the other half of the assignment. Suppose there is a <character id="Alex"
loyalty="empire" alignment="neutral"/> element in the head, but the only time Alex occurs in the body is in combination with
another character, e.g, <character ref="Alex Alathia">. We can’tjust check whether there is a @ref attribute in the body that
matches the string “Alex” because there isn’t; here, too, we have to break apart the value of the @ref and check each part separately. This
situation doesn’t happen to occur in our text, but it is potentially possible and therefore something against which a well-designed development
environment would protect the user.

Our extended solution

To avoid cluttering the screen, the Schematron below checks only <character> elements. In real life, you'd combine it with the one above.

———

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
xmlns="http://purl.oclc.org/dsdl/schematron">
<pattern>
<let name="cast-characters" value="//cast/character/@id"/>
<let name="body-characters" value="//body//character/@ref"/>
<rule context="cast/character">
<assert test="@id = $body-characters">The @id "<value-of select="@id"/>"
occurs in the cast list, but not in the body.</assert>
</rule>
<rule context="body//character">
<assert test="@ref">The character "<value-of select="."/>" is missing its @ref
attribute.</assert>
<assert :
test="every $i in tokenize(normalize-space(@ref),'\s+') satisfies $i = $cast-characters"
>The @ref "<value-of select="@ref"/>" occurs in the body, but not in the cast :
list.</assert>
</rule>
</pattern>
</schema>

...

In our first rule, which fires on <character> elements that are children of <cast>, we check the @1d attribute on every <character>
element in the cast list to verify that it is pointed to by at least one @ref attribute on a <character> element in the <body>

Our second rule verifies that every <character> element in the <body> has a @ref attribute. The developer could have checked this in
Relax NG by making the @ref attribute obligatory, but she didn’t. To our surprise, although we had used this document for other exercises
previously, until we wrote this Schematron rule we had never noticed that there are two <character> elements in the <body> that don’t
have any @ref attribute! This is real inadvertent error, and had we already learned Schematron when the original developer encoded this file,
she would have been able to use it to catch this error and fix it.

Once we’ve confirmed that there is a @ref attribute on the <character> element in the <body> that we're looking at at the moment, we
use the XPath tokenize () function to break it apart into pieces. We then use the every X in Y satisfies construction (Kay, p. 646 ff.)
to check each one individually.

Why not use ID/IDREF validation?

The Relax NG xsd : ID datatype is guaranteed to be unique in the document, and it is also guaranteed to conform to the lexical specification (=
spelling rules) for an XML non-colonized name, abbreviated NCName. NCNames must begin with an alphabetic character and can otherwise
contain alphanumeric characters and selected punctuation. They cannot contain most punctuation characters and they cannot contain
whitespace characters. If you declare an attribute as being of type xsd : ID in your schema and try to use an illegal character, <oXygen/> will
notify you of the error. You can read a more precise, human-readable description of what is and is not permitted in an NCName (and therefore
in an attribute value of type xsd: ID) at http://stackoverflow.com/questions/1631396/what-is-an-xsncname-type-and-when-should-it-be-
used.

Attributes declared as the Relax NG datatype xsd : IDREF must have values that match an item of type xsd : ID in the same document. This
means that they have the same requirements about legal and illegal characters, and they also have to match (that is, refer to) a real declared
xsd: ID value in the same document. There is also an xsd : IDREFS datatype which refers to a white-space-delimited set of one or more

xsd: ID values, which means, for example, that you can tag the word “they” in the body of your text and have it refer to the Three Stooges with:

...

http://dh.obdurodon.org/schematron-skyrim.xhtml 3/4

http://stackoverflow.com/questions/1631396/what-is-an-xsncname-type-and-when-should-it-be-used

4/3/2018 Validating references with Schematron

In the preceding example, if the @ref attribute were declared as having type xsd : IDREFS, <oXygen/> would verify that there wefé values of
type xsd: ID for “curly”, “larry”, and “moe” in the document, and it would report an error if it couldn’t find all three.

The limitation of ID/IDREF is that it can only compare an xsd : IDREF value to all xs1: ID values in the document. This imposes two more
specific limitations on its utility:

e A parser can confirm that, say, a @ref attribute on a <faction> element in the <body> points to an xsd: ID somewhere, it it cannot
determine whether the xsd: ID is specifically on a <faction> element in the <cast>.

¢ A parser cannot check an xsd: IDREF attribute value in one document against an xsd: ID attribute value in a different document.
ID/IDREF valuation happens only within a single document.

The Schematron strategy illustrated above does not suffer from either of these limitations, and this example illustrates how it overcomes the
first of them.

http://dh.obdurodon.org/schematron-skyrim.xhtml 4/4

73

newtFire {dhlds}.
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last modified: Sunday, 15-Oct-2017 19:22:02 EDT.
Powered by firebellies.

Coding with Unique Identifiers and How to Test for them with Schematron

Why and how we use unique identifiers in XML

Most of our projects demand that we compile prosopography data, that is, a standard list of unique identifiers for people, places, books, and other named
entities. We might compile a prosopography list in a header element holding metadata in a project file, or perhaps in a separate file altogether if our
project contains multiple XML files and we just want one document to store all the detailed prosopography information relevant anywhere and
everywhere throughout our project. Storing a list of prosopography entries involves creating something like a contacts list of everyone you know with
their contact information and unique identification information. In XML prosopography lists, we apply the éxml:id attribute to hold a unique string of
text, different from any other exml:id in your project, designed to identify a particular person, place, or any named thing that you need to distinguish
from other named things. In Relax NG, the éxm1:id is coded to have an xsd: 1D datatype, which requires a unique string of text for each distinct éxm1:id
and permits no duplicates. The xsd: ID datatype permits text only or a combination of text and numbers, but it must not be a string of numbers alone and
it must not contain any white space.

A common standardized format for prosopography data is defined by TEI Guidelines, specifically Chapter 13: Names, Dates, People, and Places which
provides helpful examples and useful things to think about when distinguishing among proper names. The Digital Mitford project’s Site Index file offers
several lists combined together in one file, lists of historical people, fictional characters, real and fictional places, books, journal publications, works of
art, and more, and it serves as a kind of backbone for all of the project XML files. Each XML file representing a writing by or about the nineteenth-
century author Mary Russell Mitford, say, a letter, a poem, a play, or some other kind of text, makes reference to named entities, often several of the
kinds we have mentioned, and we are coding them in a way to help keep track of particular people, fictional characters, places, books, etc. whenever they
appear (in whatever form they appear) in our files. Think about why we need to do this. One person might be called several different names in different
places, so Mitford sometimes affectionately referred to her father as “Drum” or “Papa” while another text in our project might refer to him more formally
as “Dr. Mitford” or “George Mitford”. The same person might have several nicknames, and in the case of women, their surnames might change in
marriage, but we still need a way to track these names and trace them to the same person when Mitford knew them before and after they were married.
Here is an example of an entry for Mary Ann Harvey or Mary Ann Davenport from the Digital Mitford site index:

<person xml:id="Davenport MA" sex="2">
<persName>
<surname type="maiden">Harvey</surname>
<surname type="married">Davenport</surname>
<forename>Mary</forename>
<forename>Ann</forename>
</persName>
<occupation>actor</occupation>
<note type="bio" resp="#lmw">English actor (1759-1843).</note>
</person>

We could add other <persName> elements inside this entry if we discover that Mary Ann Harvey used a pseudonym or fake name, or had a nickname. We
add as much or as little information as we can find and as seems necessary to our project, and our entries are always in a state of development as we keep
working on our project. In the body of a Mitford letter, if she mentions that her father has seen Mary Davenport perform in a play, we encode Mary’s
name like this:

<p><persName ref="#Mitford_ Geo">Drum</persName> saw <persName ref="#Davenport MA">Mary Davenport</persName>
perform in <title ref="#TwelfthNight Shkspr">Twelfth Night</title> last week.</p>

Because we are only permitted to use an éxml:id attribute value once in our entire project, we place a hashtag on all attributes (like eref, ewit,
@corresp that refer or point to that @xml:id. The use of the hashtag permits us to invoke the identifying string as often as we need to, and it permits us to
pull up more information about a given name by pointing to information in our site index file.

How to write Schematron to check hashtagged attributes against @xm1:id values

Since it is very easy to mistype an attribute value as we are coding our project files, we can either embed our éxm1:1id values in a Relax NG file, or write
Schematron rules to help us check their values against our standard list, wherever we have placed it in relation to our project files. We can also write
Schematron rules to make sure we remember to include a hashtag at the start of each value when it is in a pointer @ref or other attribute that points to an
@xml:id. That way we can point to those identifiers as many times as we need to in the document. We show you how to do with an example from the
Emily Dickinson Fascicle 16 project.

The Dickinson team prepared a list of published editions of Dickinson’s poems with exml:id attributes and detailed bibliography information about
each, and they compiled each entry inside a TEI <1istwit> element or a list of witnesses. Each entry on the list holds distinct identifying information
about a different witness that produced a distinct published representation of Emily Dickinson’s manuscript poems. The witnesses produced variants or
different readings of the same document, and coding these variant readings in the lines of poetry helped the Dickinson team to study how published
editions normalized or otherwise altered Dickinson’s poems in the different published editions. To mark the different variants (or different versions of
words and phrases and punctuation) within particular lines in each poem, and the Dickinson team referred to the source of each variant with a hashtagged
@wit attribute pointing to the @xml:id in the <listwit> up in their teideader element. Here is an abbreviated view of their list of witnesses:

<listWit>
[« . .1
<witness xml:id="poems3">
<bibl>
<title>Poems, Third Series</title>
<author>Emily Dickinson</author>
<editor>Mabel Loomis Todd</editor>
<pubPlace>Boston</pubPlace>
<publisher>Little, Brown and Company</publisher>
<date>1896</date>
<ref target="http://catalog.hathitrust.org/Record/100654113">Hathi Trust Digital Library</ref>
</bibl>

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ND.html#NDPERSbp
http://digitalmitford.org/si.xml
http://dickinson16.newtfire.org/

74

</witness>
<witness xml:id="ce">
<bibl>

<title>The Poems of Emily Dickinson: Centenary Edition</title>
<author>Emily Dickinson</author>
<editor>Martha Dickinson Bianchi and Alfred Leete Hampson</editor>
<pubPlace>Boston</pubPlace>
<publisher>Little, Brown and Company</publisher>

<date>1930</date>
</bibl>
</witness>
<witness xml:id="fh">
<bibl>

<title>Final Harvest: Emily Dickinson's Poems</title>
<author>Emily Dickinson</author>
<editor>Thomas H. Johnson</editor>
<pubPlace>Boston</pubPlace>
<publisher>Little, Brown and Company</publisher>
<date>1961</date>

</bibl>

[« - -1

</witness>
</listWit>

Schematron can be used to constrain the writing of éxml:id values in this list to meet project specifications. For example, the Dickinson team will want
to make sure their €xml:ids do not begin with hashtags:

<pattern>
<rule context="@xml:id">
<report test="starts-with(., '#')">
xml:id attributes must not begin with a hashtag!
</report>
</rule>
</pattern>

The Dickinson team uses an @wit attribute with a hashtag in the body of the poem to point to one or more identified published editions. Often a
particular variant is displayed in three or four published editions, and when that is the case, the project team separates each distinct hashtagged identifier
with a white space, like this: <rdg wit="#ce #poems2 #£h">. These point to @xml:id values defined up in the TEI header and its <1istwit> as: df16,
fh, and poems. It is very easy to mistype these ids, so we need a good schema rule to ensure they are correct. Here is how we prepared our rule for the
ewit attribute

<pattern>

<rule context="@wit">
<let name="tokens" value="for $w in tokenize(., '\s+') return substring-after(sw, '#')"/>
<assert test="every $token in $tokens satisfies $token = //tei:TEI//tei:listWit//@xml:id">

Every reading witness (@wit) after the hashtag must match an xml:id defined in the list of witnesses in

</assert>

</rule>

</pattern>

This complex rule permits us to use white space as a separator, so we can refer to multiple published editions that represent a particular variant in the
text.

The rule accomplishes several things:

1. The <let> element: This defines a variable in Schematron, and gives it an @name ("tokens") which we can quickly refer to with a dollar-sign in
front of it, as $token. We can define a variable inside a rule to make it local (in which case the parser only "knows" about it and reads it within the
context of a particular rule), or we can define it as a global variable by setting the <let> element above the <pattern> elements in the Schematron
hierarchy so the variable can be invoked everywhere.

Note: We make global variables when we need to write Schematron rules that point to other files, to see if a value of an attribute matches an
@xml:id defined in a separate project file, for example. But variables can be used to hold any complex pattern that you want to invoke in a rule
@context Or in an @test On an assert oOr report element.

2. Dealing with multiple values: First, in our variable, we tokenized our ewit attribute on white space, and that created multiple values or token. So if
we do use one or more white spaces in an @wit attribute, we use those white spaces as a dividing point: we separate the value into "tokens": so
<rdg wit="#ce #poems2 #fh"> would be tokenized into three pieces. Our language, for $w in tokenize(., '\s+'),defines a separate
variable for each one of these tokens, since we need to look at them one by one. For each of these, we need to cut off the leading hashtag, so we do
one more thing: return the substring-after($w, '#').This creates three tokens in this format:

o token 1: ce
o token 2: poems2
o token 3: fh

75

3. Now our assert test needs to do something more, so it can deal with a situation in which there’s only one token or multiple tokens. We can’t just
test all the tokens at once against each @xml:id because Schematron needs to look at them one at a time: first ce, then poems2, then th. For that
one-at-a-time handling, we use this syntax: <assert test="every $token in $tokens satisfies $token =
//tei:TEI//tei:listwWit//@xml:id">The work of this is done by the structure: every [singular] in [plural] satisfies [a test you
design for the singular value].

If the Dickinson team members move their <listwit> to separate file of prosopography lists, like the site index of the Mitford project, they would
define a variable with another let statement pointing to a file in its location relative to the Dickinson project files. The file can be served on the
web and pointed to with an absolute web address, or referenced by a relative address as we do here:

<let name="si" value="doc('Dickinson_listIds.xml')//@xml:id"/>

<pattern>

<rule context="@wit">
<let name="tokens" value="for $w in tokenize(., '\s+') return substring-after($w, '#')"/>
<assert test="every $token in $tokens satisfies $token = $si">

Every reading witness (@wit) after the hashtag must match an xml:id defined in the list of witness

</assert>

</rule>

</pattern>

Defining the variable $si above a <pattern> element makes it a global variable in Schematron, which means it can be referenced in multiple
pattern elements. We could also define it inside the <rule> if we only need to represent the variable within this particular rule. Defining variables
as filepaths in Schematron is a convenient way to make your schema rules cross-check values between multiple files. Here it permits us to use one
file as a way to validate the attribute values in use on any project file associated with this Schematron file.

http://digitalmitford.org/si.xml

76

<o00>—+<dh> Digital humanities

Maintained by: David J. Birnbaum (djbpitt@gmail.com)
Last modified: 2017-10-27T18:54:39+0000

What’'’s new in XSLT 3.0 and XPath 3.1?

1. Introduction
This page aims to provide a brief introduction to small but useful enhancements to XPath and XSLT that have emerged since the publication
of Michael Kay’s XSLT 2.0 and XPath 2.0 programmer’s reference, 4th edition, which covers XPath 2.0 and XSLT 2.0. Two of the most significant

additions to XSLT 3.0, streaming and packaging, are not covered here because, as important as they are for large files or complex
transformations, we haven’t found a need for them in the smaller scale on which we usually operate.

2. References

e XML Path Language (XPath) 3.1 W3C Recommendation 21 March 2017

e XPath and XQuery Functions and Operators 3.1. W3C Recommendation 21 March 2017
e XSL Transformations (XSLT) Version 3.0. W3C Recommendation 8 June 2017

¢ Roger Costello’s Pearls of XSLT and XPATH 3.0 design

3. Configuring <oXygen/>

To tell <oXygen/> that new XSLT files should default to XSLT 3.0, click on File = New — XSLT — Customize and select “3.0”.
4. XPath 3.0 and 3.1

4.1. Variable declaration

XPath in XSLT allows the use of the Let construction, which was previously available only in XQuery. See immediately below, under
Concatenation.

4.2, Concatenation with | |

The string concatenation operator | | can be used in situations that previously required the concat () function. For example, the following
XPath expression:

...

4.3. Simple mapping with the bang operator (!)

The bang operator applies the operation to the right of the bang to each item in the sequence on the left. For example:

('curly', 'larry', 'moe') [string-length(.)

for $stooge in ('curly', 'larry', 'moe') return string-length($stooge)

The simple mapping operator is similar to /, except that 1) the sequence to the left of / must be a sequence of nodes, while the sequence to
the left of I can be a sequence of any items, and 2) / sorts the sequence on the left into document order and eliminates duplicates, while !

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.amazon.com/XSLT-2-0-XPath-Programmers-Reference/dp/0470192747/
https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xpath-functions-31/
https://www.w3.org/TR/xslt-30/
http://www.xfront.com/Pearls-of-XSLT-and-XPath-3-0-Design.pdf
http://www.obdurodon.org/
http://dh.obdurodon.org/

performs no sorting or deduplication. 7
4.4, Function chaining with the arrow operator (=>)

The arrow operator pipes the output of the item on the left into the first argument of the function on the right. It thus provides an
alternative to nested parentheses. For example (from the XPath 3.1 spec, §3.16):

———

———

$book ! (@author, @title)

return the values of the @author and @t i t1e attributes of some element that is the value of the variable $book, but because the
operation on the right is not function, if you replace the bang with the arrow operator, you throw an error. The arrow operator does not use
the dot to specify the first argument to the function because the operator supplies that argument instead.

Because the bang operator is a mapping and the arrow operator is a pipe, the following two expressions produce different results:

...

"curly larry moe' => tokenize('\s+') => count()

———

"curly larry moe' ! tokenize(.,'\s+') ! count(.)

returns a sequence of three instances of the integer value “1”. The difference is that after tokenize () returns a sequence of three items,
the bang operator maps each item individually as the input to the count () function, while the arrow operator counts the items in the
sequence.

4.5. unparsed-text-lines()
unparsed-text-1lines () works like unparsed-text (), except that it tokenizes on newlines and streams the input line by line.
4.6. Maps

The following example creates a map and then serializes it as JSON on output:

<xsl:variable name="mymap" as="map(*)"
select="map {
"Su" : "Sunday",
: "Mo" : "Monday", !
: "Tu" : "Tuesday",
: "We" : "Wednesday", :
"Th" : "Thursday",
"Fr" : "Friday",
"Sa" : "Saturday"
P>
<xsl:template match="/">
<root>
: <text>Hi, Mom! Here’s some information:</text> !
: <para>{ :
: serialize($mymap, map{"method":"json","indent":true()})
}</para>
</root>
</xsl:template>

...

$stuff?row ...

https://www.w3.org/TR/xpath-31/#id-arrow-operator

In eXist-db, to create a map using a for loop use something like: 78

———

declare variable $map as map(*) :=
map:merge(for $i in $realTitles return map:entry($i, count($items/tei:title[. eq $i1))):

The map:entry () function creates anonymous separate one-item maps with the string values of $realT1it1es as the keys and the
number of times each title appears in the corpus as the value. Wrapping the FLWOR in the map :merge () function merges the individual
maps into a single map, which is assigned to the variable $map. Note the syntax of the value specified by the as operator, which is necessary
(should we choose to specify a datatype) because maps are not traditional atomic types. To access the values of the map, use something like:

...

for $bg in map:keys($map)

let $en as element(en) := $titles[bg eq $bgl/en

order by $en

return <option value="{$bg}">{%en || ' (' || $map($bg) || ')'}</option>

This gets each key from the map, uses it to retrieve the English translation of a Bulgarian title from the $t1tles variable, and then also
uses it as the single argument of the $map () function to retrieve the number of times the Bulgarian title appears in the corpus. Note that
because maps are functions, instead of indexing into them with square brackets, we execute them with the key as the single argument to the
function, and the argument is in parentheses, as is usual for functions.

4.7. Arrays
Add stuff here

5. XSLT 3.0
5.1. Boolean values

Boolean values can be expressed as any of “true”/“1”/“yes” or “false”/“0”/“no”. For example, to turn on pretty-printed output, set the value
of the @indent attribute of <xs1:output> to any of “true”, “1”, or “yes”.

5.2. Starting from a named template

If you set the value of the @name attribute of an <xs1:template> element to “xsl:initial-template” and run a transformation from the
command line with the “-it” (= ‘initial template’) switch, the template named “xsl:initial-template” is now the default. Previously you had to
specify the name of your initial template on the command line.

5.3. Content Value Templates

Like Attribute Value Templates, Content Value Templates let you specify that certain text should be intepreted as XPath instead of being
output literally. The syntax for CVTs is the same as for AVTs: surround the expression in curly braces (to use a literal curly brace, double
them), and multiple values are output with a single space between them. CVTs work ony if you create an @expand-text attribute on the
root <xsl:stylesheet> element and give it a positive Boolean value. CVTs are similar to the use of curly braces in XQuery to switch from
XML mode into XQuery mode, and they can be used in situations where you may previously have had to use <xs1:value-of> or
something that converts its arguments to strings, like concat () or | |. Here’s an example:

...

<xsl:template name="xsl:initial-template">Hello, World! It’s {current-time()}</xsl:template>

...

———

<xsl:template name="xsl:initjal-template">
<xsl:text>Hello, World! It’s </xsl:text>
<xsl:value-of select="current-time()"/>
</xsl:template>

———

<xsl:template name="xsl:initial-template">
<xsl:value-of select="concat('Hello, World! It’s ', current-time())"/>
</xsl:template>

...

———

i <xsl:template match="/"> :
' <xsl:value-of select=""'Hello, World! It’s ' || current-time()"/> :
i </xsl:template> :

5.4. @item-separator

The @item-separator attribute on <xs1:output> can be used to change the item separator from the default space to something else.
Must be combined with @build-tree="no".

5.5. Shadow attributes

Shadow attributes mask regular attribute values, and have the same name as the regular attribute, but with a leading underscore.
5.6. Variables and functions

Functions can be assigned to a variable. To reference them, add parentheses after the variable name.

5.7. Creating HTML5

To create HTMLS5 output, use <xs1:output method="html" version="5"/>.This creates HTMLS using HTML (not XML) syntax,
which means that it omits the XML declaration and it creates a <meta> element inside the <head>. If you serve your HTML5 as mime type
“application/xhtml+xml” and want to validate it as XML, set @method to “xml” instead (and set @indent to a positive Boolean value unless
that messes up your white space). Setting the @method to “html” also doesn’t add the HTML namespace automatically (fair enough).

5.8. Identity transformation

The identity transformation can be expressed in a single top-level <xs1:mode> element:

5.9. Iteration

Iteration may sometimes be easier to write than recursion. The following code returns a running total of the integers from 1 through 10:

<xsl:iterate select="1 to 10">
<xsl:param name="total" as="xs:integer" select="0"/>
<xsl:variable name="newTotal" as="xs:integer" select="$%total + ."/>
<xsl:value-of select="concat($total, " + ', . , ' ="', %$newTotal, '
"')"/>
<xsl:next-iteration>
<xsl:with-param name="total" select="$newTotal"/>
</xsl:next-iteration>
</xsl:iterate>

This outputs the results of each iteration. To output only the final total, remove the <xs1:value-of> statement and use <xs1:on-
completion>:

...

<xsl:iterate select="1 to 10">

<xsl:param name="total" as="xs:integer" select="0"/>
! <xsl:on-completion select="$total"/> !
: <xsl:variable name="newTotal" as="xs:integer" select="$total + ."/>
<xsl:next-iteration>

<xsl:with-param name="total" select="$newTotal"/>
</xsl:next-iteration>
i </xsl:iterate> :

although for this contrived problem it would, of course, be simpler to write <xs1:value-of select="sum(1l to 10)"/>.

A recursive template call might look like:

e 80 T H
i <xsl:template match="/">
<xsl:variable name="result">
<xsl:call-template name="accumulate">
: <xsl:with-param name="total" select="0"/> :
| <xsl:with-param name="range" select="1 to 10"/> |
H </xsl:call-template> :
</xsl:variable>
: <xsl:sequence select="$%result"/> :
i </xsl:template>
i <xsl:template name="accumulate"> :
<xsl:param name="total" as="xs:integer"/>
<xsl:param name="range" as="xs:integer*"/>
<xsl:choose>
<xsl:when test="empty($range)">
<xsl:sequence select="'done'"/>
</xsl:when>
<xsl:otherwise>
<xsl:variable name="currentValue" as="xs:integer" select="$range[1l]"/>
<xsl:variable name="newTotal" as="xs:integer" select="$total + $currentValue"/> :
<xsl:value-of select=" concat($total, ' + ', $currentValue, ' = ', $newTotal, '
'){/>
<xsl:call-template name="accumulate"> H
<xsl:with-param name="total" as="xs:integer" select="$newTotal"/>
<xsl:with-param name="range" as="xs:integer*" select="remove($range, 1)"/>
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

This returns a report on each step plus the word “done” at the end. To see just the steps, make <xs1:when> an empty element. To return
just the total, remove the <xs1:value-of> from the <xs1:otherwise> element and set the value of the sequence returned inside
<xsl:when>to $total.

4/3/2018 Regex assignment #1
81

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-01-31T00:45:33+0000

Regex assignment #1

What to submit

We describe below how to use regex to transform plain text into XML, which is the task for this
assignment. We don’t need to see your XML, but we do need to see a step-by-step explanation of how you
used regex to create it. That explanation should be a plain-text document (not a word-processor document);
the reason is that a word processor might convert your straight quotation marks to curly ones or make
other typographic changes that are desirable when you’re writing a term paper, but that will corrupt your
regex (curly quotation marks are not legal replacements for straight ones in regex).

You can create your plain text explanation of your regex conversion process in <oXygen/>. Create a new
document in <oXygen/>, selecting “Text” as the document type. Write up your process there, hitting the
“Enter” or “Return” key at the end of each line to keep the line length manageable (<oXygen/> does not
wrap long lines automatically, and pretty-printing doesn’t work with plain text documents). Save your
document with a “txt” filename extention, which is the conventional extension for plain text documents.

The input text

The text we'll be using as input for the first regex homework assignment is a plain-text version of
Shakespeare’s sonnets, which you should download from
http://www.gutenberg.org/cache/epub/1041/pgl1041.txt and open in <oXygen/>. (Note that this site
sometimes shows you a pop-up welcome screen and a list of different versions of the file, instead of taking
you to the plain text one directly. If that happens, click OK on the Welcome pop-up and then select the
version labeled Plain Text UTF-8.) You should manually delete any of the Project Gutenberg information
from the beginning and end of this file, so that what you're left with is just the sonnets in order;, with
roman numerals before each one.

If you find it easier to work with a small amount of text, you can make yourself a document that contains
just a few sonnets and use that during development. Once you think you're getting the results you want,
you can then try applying the same strategy to the entire file. The structure of this document is very
regular, so whatever works for a handful of sonnets should work for all of them.

The task

Your goal is to produce an XML version of this file by using the search-and-replace techniques we
discussed in class. Your output should look something like http://dh.obdurodon.org/shakespeare-
sonnets.xml. That is, each sonnet should be its own element, each line should be tagged separately, and
the roman numerals should be encoded in a useful way (we’ve used attributes, but you could also put
them in a child element).

http://dh.obdurodon.org/regex-assignment-01.xhtml 1/5

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.gutenberg.org/cache/epub/1041/pg1041.txt
http://dh.obdurodon.org/shakespeare-sonnets.xml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 Regex assignment #1

How to proceed .

There are several ways to get to the target output, but here is how we might approach the task:
Reserved characters

The plain text file could, at least in principle, contain characters that have special meaning in XML: the
ampersand and the angle brackets. You need to search for those and replace them with their
corresponding XML entities; if you don’t remember the entity strings, you can look them up in the
“Entities and numerical character references” section of http://dh.obdurodon.org/what-is-xml.xhtml.
Note that you need to process them in the correct order. What is that order, and why is it important?

Title and author

The title and author at the top are going to have to be tagged manually. You can either remove them now
and then paste them back in later, after you’ve tagged the sonnets, or you can leave them in place and fix
them up at the end. You'll use global find-and-replace to tag the sonnets, and if you leave the title and
author in place while you do that, you'll wind up tagging them incorrectly. That isn’t a problem as long as
you remember to fix them manually at the end.

To perform regex searching, you need to check the box labeled “Regular expression” at the bottom of the
<oXygen/> find-and-replace dialog box, which you open with Control-f (Windows) or Command-f (Mac).
If you don’t check this box, <oXygen/> will just search for what you type literally, and it won’t recognize
that some characters in regex have special meaning. You don’t have to check anything else yet. Be sure
that “Dot matches all” is unchecked, though; we’ll explain why below.

Leading space characters

The non-blank lines all begin with space characters: there are two spaces before most lines (the Roman
numerals and the first twelve lines of each sonnet) and four spaces before the last two lines of every
sonnet. Those spaces are presentational formatting, and not part of the content of the text, and since we
don’t need them in order to tag the text, we’ll start by deleting them. The regex to match a space character
is just a space character, and you can match one or more space characters by using the plus sign repetition
indicator. To match one or more instances of the letter “X”, you would use a regex like X+. To match one or
more instances of a space character, just replace the “X” with a space.

You don’t want to remove all space characters, though; you just want to remove the ones at the beginning
of a line. You can do that by using the caret metacharacter, which anchors a match so that it succeeds only
at the beginning of a line. For example, if the regex X+ matches one or more instances of “X”, the regex
AX+ matches one or more instances of “X” only at the beginning of line. You can use this information to
match one or more space characters at the beginning of a line and replace them with nothing, that is,
delete them.

We aren’t going to use the blank lines in this approach, so you can delete those if you'd like, or you can
leave them in place to enhance the legibility. To delete them, you need to match a blank line, and the
easiest way to do that is to match two new line characters in a row and replace them with a single new
line character. The regex for a new line character is \n. Try it.

Inside out or outside in

http://dh.obdurodon.org/regex-assignment-01.xhtml 2/5

http://dh.obdurodon.org/what-is-xml.xhtml

4/3/2018 Regex assignment #1

We can create our markup either from the outside in (document, then sonnet, then divide the sortiet into
Roman numeral and lines) or from the inside out (lines and Roman numeral, then wrap those in a sonnet,
then wrap all of the sonnets in a document). Either strategy can be made to work, but we generally find it
easier to work from the inside out because when we work from outside in, it’s easy to wind up incorrectly
wrapping <1ine> tags around the <sonnet> start and end tags, etc.

Lines

We'll start by tagging every line as a <11ne>. This will erroneously tag the Roman numerals as if they
were lines of poetry, which they aren’t, but it’s easier to let the first find-and-replace overgeneralize and
then go back and retag the Roman numerals than to try to write a more constrained regex that won’t
overgeneralize. We don't want to tag blank lines (if we left them in), though, so we need a regex that
matches only lines that have characters in them. Remember where we told you above to make sure that
“Dot matches all” was unchecked? Normally the dot (.) matches any character except a new line, which
means that we can use the plus sign repetition indicator to match one or more instances of any character
except a new line (thatis, . +). By default regex selects the longest possible match, so even though just two
characters on a line will match the pattern, when we run it it will always match the entire line. Since the
dot matches any character except a new line, the regex will match each line individually, that is, it won’t
run over a new line and continue the same match. Try it and examine the results. Now check “Dot matches
all”, run Find all, and look at those results. Notice that the match no longer stops at the end of the line, and
since you want to tag each line individually, you need to uncheck that box to revert to the normal, default
behavior.

A human might think of our task as “wrap every line in <11ine> tags”, but regex has a find-and-replace
view of the world, so a regex way to think about it would be “match every line, delete it, and replace it
with itself wrapped in <11ine> tags”. That is, regex doesn’t think about leaving the line in place and
inserting something before and after it; it thinks about matching the line, deleting it, and then putting it
back, but with the addition of the desired tags. The regex selects and matches each full line, but how do
we write what we selected into the replacement string? The answer is that the sequence \0 in the
replacement pattern means “the entire regex match”, and you can use that to write the matched line back
into the replacement, but wrapped in <11ne> tags. Try it.

Roman numerals

The Roman numerals are now erroneously tagged as if they were lines of poetry, and in our sample output
at http://dh.obdurodon.org/shakespeare-sonnets.xml we want them to be attribute values. To start that
process we need to think about how to distinguish a Roman numeral line from a real line of poetry. Since
there are 154 sonnets, a Roman numeral line is a line that contains one or more instances of “1”, “V”, “X”,
“L”, and “C” in any order and nothing else, and no real line of poetry matches that pattern. That means
that we can match that pattern by using a regex character class, which you can read about at
http://www.regular-expressions.info/charclass.html. This approach will match sequences that aren’t
Roman numerals, like “XVX"”, but those don’t occur, so we don’t have to worry about them. This illustrates
a useful strategy: a simple regex that overgeneralizes vacuously may be more useful than a complex one
that avoids matching things that won't occur anyway. You can use the character class (wrapped in square
brackets) followed by a plus sign (meaning one or more) to complete your regex so that it matches only
<l1ine> elements that contain a Roman numeral and nothing but a Roman numeral. Try it.

In this case you want to write the Roman numeral into the replacement string, but you want to get rid of
the spurious <11ne> tags and replace them with other markup. \ @ will write the entire match into the
replacement, but that would include the original <11ne> tags that you want to remove. To capture just
part of a regex match for reuse in the replacement, you wrap it in parentheses; this doesn’t match

http://dh.obdurodon.org/regex-assignment-01.xhtml 3/5

http://dh.obdurodon.org/shakespeare-sonnets.xml
http://www.regular-expressions.info/charclass.html

4/3/2018 Regex assignment #1

parenthesis characters, but it does make the part of the regex that’s between the parentheses avaifable for
reuse in the replacement string. For example, a (b) ¢ would match the sequence “abc” and capture the “b”
in the middle, so that it could be written into the replacement. Capturing a single literal character value
isn’t very useful because you could have just written the “b” into the replacement literally, but you can
also capture wildcard matches. For example, a (.) ¢ matches a sequence of a literal “a” character followed
by any single character except a new line followed by a literal “c” character. You can use that type of
approach to capture everything between the <11ine> tags in the matched string: write a regex that
matches the entire line with the Roman numeral, including the <11ine> tags, but put parentheses around
the stuff between the <11ine> tags.

Okay, you've captured the Roman numeral, but how do you write it into the replacement? To write a
captured pattern into the replacement, use a backslash followed by a digit, where \ 1 means the first
captured group, \ 2 means the second, etc. Since in this case we're capturing only one group (we have only
one set of parentheses), wherever we write \ 1 in our replacement string, we’ll insert the Roman numeral
that we captured. For this task we’d build a replacement string that starts with a </sonnet> end tag
(since the Roman numeral appears after the end of the preceding sonnet), then a new line, and then a
<sonnet> start tag, and inside that start tag we’d include the number attribute and use the captured
string (thatis, \ 1) as its value, etc. Try it.

Clean up

You may have to clean up the beginning and end of the document manually, including the title and author,
and you'll also need to add a root element.

Checking your results

Although you’ve added XML markup to the document, <oXygen/> remembers that you opened it as plain
text, which means that you can’t check it for well-formedness. To fix that, save it as XML with File — Save
as and give it the extension “.xml”. Even that doesn’t tell <oXygen/> that you’'ve changed the file type,
though; you have to close the file and reopen it. When you do that, <oXygen/> now knows that it's XML, so
you can verify that it's well formed in the usual way: Control+Shift+W on Windows, Command+Shift+W
on Mac, or click on the arrow next to the red check mark in the icon bar at the top and choose “Check well-
formedness”.

General

As we mention above, there are several ways to get to the target output, and whatever works is legitimate,
as long as you make meaningful use of computational tools, including regular expressions (where
appropriate), and don’t just tag everything manually. As you saw in class, there are ways to build your own
regular expressions to match whatever patterns you need to identify, and the regex languages is complex
and often difficult to read. The way we would approach this task is by figuring out what we need to match
and then looking up how to match it. In addition to the mini-tutorial above, there is a more
comprehensive description in the regex section of Michael Kay’s book and more detailed tutorial
information at http://www.regular-expressions.info/tutorialcnt.html. If you decide to look around for
alternative reference sites and find something that seems especially useful, please post the URL on the
discussion boards, so that your classmates can also consult it.

What to submit (reminder)

http://dh.obdurodon.org/regex-assignment-01.xhtml 4/5

http://www.regular-expressions.info/tutorialcnt.html

4/3/2018 Regex assignment #1

We don’t need to see the XML that you produce as the output of your transformation because we’¥e going
to recreate it ourselves anyway, but you do need to upload a step-by-step description of what you did (see
the explanation at the top of the page of why and how to create a plain text write-up). Your write-up can
be brief and concise, but it should provide enough information to enable us to duplicate the procedure
you followed.

[f you don’t get all the way to a solution, just upload the description of what you did, what the output

looked like, and why you were not able to proceed any further. As always, you're encouraged to post any
questions on the discussion boards, in this case in the regex forum.

http://dh.obdurodon.org/regex-assignment-01.xhtml 5/5

4/3/2018 Regex assignment #2
86

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2015-09-21T12:41:08+0000

Regex assignment #2

The task

Assume that we’ve been given a plain-text file like the Project Gutenberg EBook of The Blithedale
Romance, by Nathaniel Hawthorne, and we want to convert it to XML, but we don’t want to type all of the
angle brackets manually. (Note that this site sometimes shows you a pop-up welcome screen and a list of
different versions of the file, instead of taking you to the plain text one directly. If that happens, click “OK”
on the “Welcome” pop-up and then select the version labeled “Plain Text UTF-8".) In this case Project
Gutenberg makes the same book available in HTML, and in Real Life we’d probably convert from HTML to
XML (using XSLT, which we'll learn later in the semester) rather than from plain text, but since there are
situations where all we have is plain text, we’ll ignore the HTML version on the Gutenberg site, pretend
that all they provide is plain text, and work with that. So what can we tag automatically, with global find-
and-replace operations? Some of the markup we might want to introduce for analytical purposes might
require us to touch every word of the text, but, at a minimum, we can autotag chapters, chapter titles,
paragraphs, and quotations using regex tools, and that’s the goal of the present assignment.

Preliminaries

Select the plain-text version of the document and open it in <oXygen/> as a plain text file. Then cut out the
front matter (before the main title title) and the back matter (after the last line of the text of the novel,
which is “I--I myself--was in love--with--Priscilla!). In Real Life we might want to mark those parts up
eventually and reintroduce them into the XML as metadata, but for this assignment we’ll just delete
everything that isn’t part of the text of the novel.

Step by step
There’s more than one way to accomplish this task, but one way to approach the problem is as follows:
Reserved characters

The plain text file could, at least in principle, contain characters that have special meaning in XML: the
ampersand and the angle brackets. You need to search for those and replace them with their
corresponding XML entities; if you don’t remember the entity strings, you can look them up in the
“Entities and numerical character references” section of http://dh.obdurodon.org/what-is-xml.xhtml.
Note that you need to process them in the correct order. What is that order, and why is it important?

Extra blank lines

http://dh.obdurodon.org/regex-assignment-02 .xhtml 1/6

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.gutenberg.org/cache/epub/2081/pg2081.txt
http://dh.obdurodon.org/what-is-xml.xhtml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 Regex assignment #2

The blank lines are pseudo-markup that tell us where titles and paragraphs begin and end, but in®ome
cases there are multiple blank lines in a row (for example, there are two blank lines between the title and
the word “by”). Those extra blank lines don’t tell us anything useful, so we’ll start by getting rid of them.
We want to retain one blank line between titles and paragraphs, etc., but not more than one.

To perform regex searching, you need to check the box labeled “Regular expression” at the bottom of the
<oXygen/> find-and-replace dialog box, which you open with Control-f (Windows) or Command-f (Mac).
If you don’t check the “Regular expression” box, <oXygen/> will just search for what you type literally, and
it won’t recognize that some characters in regex have special meaning. You don’t have to check anything
else yet.

The regex escape code that matches a new line is \ n, so you want to search for more than two of those in
succession, and you want to replace them with exactly two. You can search for three blank lines and
replace them with two and then keep repeating the process until there are no instances of three blank
lines left, or, more elegantly and efficiently, you can search for \n{3, }, which matches three or more new
line characters in succession (see the “Limiting repetition” section of http://www.regular-
expressions.info/repeat.html) and replace them with \n\n (the quantifiers work only in matches, but not
in replacements, so you have to write it this way).

Note that a transformation that searches for a sequence of two end-of-line characters depends on their
being immediately adjacent to each other. If what looks like a blank line to you actually has (invisible)
spaces or tabs, the pattern won’t match and the replacement won’t happen because there will be spaces
or tabs between the end-of-line characters, which is to say that they won’t be adjacent. If you think that
might be the case, you can make those characters visible by going into the <oXygen/> preferences
(Preferences — Editor) and checking the boxes labeled “Show TAB/NBSP/EOL/EOF marks” and “Show
SPACE marks” under Whitespaces. If you do have whitespace characters interfering with your ability to
find a blank line (that is, two consecutive new line characters), you can use regex processing to replace
them: the pattern \ t matches a tab character, a space matches a space, and \ s+ matches one or more
white-space characters of any sort (including new lines). You can use the “Find” or “Find all” options in
the find-and-replace dialog to explore the document and make sure that you’re matching what you want
to match before you use “Replace all” to make the changes.

Paragraphs

What's left after deleting the beginning and ending metadata and extra blank lines is mostly (except for
the stuff at the top) a bunch of chapter titles and paragraphs, separated from one another by a single
blank line, and we can use a regex to find all blank lines and replace them with the sequence </p><p>.
XML doesn'’t care about the following, but for human legibility, we’d suggest inserting a new line character
between the tags, instead of just outputting the end tag followed immediately by the start tag, so that each
paragraph will start on a new line. You'll have to add the <p> start tag before the first paragraph and the
</p> end tag after the last one manually, but you can enter all of the rest automatically with a single
regex-aware find-and-replace operation. At this point the document looks like a bunch of <p> elements.
Some may contain chapter titles, rather than paragraphs. We’ll fix that below. At the top of the file, the
title, author, and list of chapter titles will need special handling. We'll talk about those below, too.

Chapter titles

The title of the first chapter within the body looks like:

<p>I. OLD MOODIE</p>

http://dh.obdurodon .org/regex-assignment-02 .xhtml 2/6

http://www.regular-expressions.info/repeat.html

4/3/2018 Regex assignment #2
___ P Rt

the second looks like:

<p>II. BLITHEDALE</p>

and we can see easily, from the list of chapter titles at the top, that there are twenty-nine chapter titles,
each of which begins with a Roman numeral, then a period, and then a single space character, and each of
which runs until the end of the line. No real textual paragraph looks like that, although some paragraphs
could begin with the pronoun “I”, which looks like a Roman numeral, and some paragraphs might be only
one line long. If we can write a regex that matches chapter titles and only chapter titles, then, we can
replace the paragraph markup with title markup, retaining the part in the middle.

We're not going to write that regex for you, but we will tell you the pieces we used. Try building a regex
and running “Find all” to verify that it is matching all of the chapter titles and nothing else. When you can
match what you need, then you can think about how to craft the replacement string. Here are the pieces:

» «

¢ First make sure that, under “Options”, “Case sensitive” is checked and “Dot matches all” is
unchecked. You want to do case sensitive matching because the Roman numeral characters here are
all upper case, so you want to be able to distinguish those from lower case “i”, “v”, “x”, etc. We'll
discuss when to use “Dot matches all” below, but for now, make sure that it’s unchecked.

* You want to match the entire content of a line, and you can do that by using the ** (line start) and $
(line end) anchor metacharacters. If you type, say, “A” into the “Find” box and hit “Find all”, you'll
match every upper-case “A” in the document (try it). But if you type “*A”, you’ll only find an “A” at
the very beginning of a line. In other words ”* doesn’t match a caret character; what it does is anchor
the match so that it succeeds only if it falls at the beginning of a line. Similarly, the $ doesn’t match a
literal dollar sign; what it does instead is anchor a match so that it succeeds only if it falls at the end
of aline. This also means that *A$ will match only lines that consist of nothing except the letter “A”.
You don’t want to match lines that consist of nothing but the letter “A”, but with the two anchors (%,
$), the knowledge that the dot (.) matches any character except a new line, andyour knowledge of
the regex repetition indicators (?, +, *), you have all the pieces you need to craft a regular
expression that will match an entire line, no matter what the contents.

¢ A chapter title is (now) wrapped (misleadingly) in <p> tags and fills a single line. That may not
always be the case with other texts you'll need to process, but you can see that it is here, and you
can take advantage of that fact by searching for lines that begin with <p> and end with </p> (using
the line start and line end metacharacters to match those tags only at the beginning and end of
lines). But you also need to match the stuff between the tags, and that’s different for every chapter.
You can handle that situation, as you did when you matched entire lines above, by using the regex
dot (.) metacharacter, which matches any character except a new line. And since you don’t know
the exact number of characters in each title, you can match one or more characters by using the plus
sign (+) repetition indicator, which means “one or more”. Now try putting these pieces together and
matching all lines that begin with a <p> start tag, continue with one or more characters (any
characters except a new line), and end with a </p> end tag. When you look at the results, you’ll see
that you've matched all of the chapter titles, but also all other one-line paragraphs. You've also
matched the title, author, and a few other lines near that top, but you’ll need to repair those
manually at the end anyway.

* You now need to refine your regex so that you'll continue to match chapter titles, but not other one-
line paragraphs. Since chapter titles begin with a Roman numeral, you can modify your regex to
match only if a Roman numeral immediately follows the <p> start tag. To do that you'll use a
character class, which you can read about at http://www.regular-expressions.info/charclass.html.
You want to match any sequence of “I”, “V”, and “X” characters in any order. This will match

http://dh.obdurodon .org/regex-assignment-02 .xhtml 3/6

http://www.regular-expressions.info/charclass.html

4/3/2018

Regex assignment #2

sequences that aren’t Roman numerals, like “XVX”, but those don’t occur, so you don’t have £ worry
about them. This illustrates a useful strategy: a simple regex that overgeneralizes vacuously may be
more useful than a complex one that avoids matching things that won’t occur anyway. You can use
the character class (wrapped in square brackets) followed by a plus sign (meaning “one or more”)
to enhance your regex and match only one-line paragraphs that begin with something that looks like
a Roman numeral. Try it.

This almost works, but it also matches one-line paragraphs that begin with the first person singular
pronoun “I”, such as:

To weed those out, you want to match a Roman numeral only if it’s followed immediately by a
period. Since the dot in regex is a metacharacter that matches any character except a new line, if you
want to match a literal period, you have to escape the dot character by preceding it with a backslash
(\). Add that after the Roman numeral part of your regex, and you should be matching only the
twenty-nine chapter-title lines.

Matching the chapter titles is necessary but not sufficient: you now need to replace the paragraph
tags with <title> tags. To do that we need to capture the part of the title line that's between the
paragraph tags and write that captured text into the replacement. To capture part of a regex, you
wrap it in parentheses; this doesn’t match parenthesis characters, but it does make the part of the
regex that’s between the parentheses available for reuse in the replacement string. For example,

a (b) c would match the sequence “abc” and capture the “b” in the middle, so that it could be
written into the replacement. Capturing a single literal character value isn’t very useful because you
could have just written the “b” into the replacement literally, but you can also capture wildcard
matches. For example, a (.) ¢ matches a sequence of a literal “a” character followed by any single
character except a new line followed by a literal “c” character. You can use that information to
capture everything between the paragraph tags in the matched string. To write a captured pattern
into the replacement, use a backslash followed by a digit, where \ 1 means the first capture group,
\2 means the second, etc. In this case you're capturing only one group, so you can build a
replacement string that starts with <title>, ends with </title>, and puts \ 1 between them.
You don’t need to do anything about the line start and line end anchors; since you’ve matched an
entire line, the replacement will automatically be an entire line.

Putting this all together, you should be able to retag your titles automatically, distinguishing them
from the paragraphs. Try it.

Chapters

A book isn’t just a series of paragraphs with titles strewn among them; the book has logical chapters,
which must begin with a title, and you want to represent this part of the logical document hierarchy in
your markup by inserting <chapter > tags. Much as you used blank lines as milestone delimiters
between paragraphs earlier, you can now use your <title> elements as delimiters between chapters.
Use a find-and-replace operation to do this; you’ll have to clean up the markup before the first chapter
and after the last one manually, since in those cases the <title> element doesn’t have the same
milestone function as elsewhere.

Quotes

How are quotations represented in the plain text? How would you find the text of a quotation, that is, how
would you find where it starts, where it ends, and what goes between the start and the end? Files on the

http://dh.obdurodon .org/regex-assignment-02 .xhtml 4/6

4/3/2018 Regex assignment #2

Internet sometimes have errors and inconsistencies; if you're relying on cues in the text to identif} the
beginnings and ends of quotations, what can happen if you miss one?

If we assume that a quotation is text between opening and closing quotation marks (which are the same
in this text, which has straight quotation marks, instead of the curly typographic ones where the opening
and closing shapes are different), we have at least two concerns:

¢ Aline may have more than one quotation. If we write a regex like " . +" (including the quotation
marks), will we match each quotation individually, or will we match the first quotation mark on the
line and the last, erroneously gobbling up everything between into one spurious quotation? Try it
and see.

¢ Some quotations span multiple lines. Since the dot matches any character except a new line, if we
write " . +" and the start and end quotation marks are on different lines, we’ll fail to match those
quotations, and we may erroneously match material between ending and starting quotation marks,
instead of only between starting and ending ones. Try it and see.

Let’s address the second problem first. There’s a line in the text that reads:

{ without further question, only," added she, "it would be a convenience

which represents the end of one quotation and the beginning of another. If we write " . +", the system will
incorrectly think that the first quotation mark opens a quotation and the second closes one, and it will
also fail to recognize that the material before and after that line is really part of a quotation. We can fix
this by checking the “Dot matches all” box, which changes the meaning of the dot metacharacter from “any
character except a new line” to “any character including a new line”. This means that we should be able to
match quotations that cross line boundaries. Try it and notice the different results. Uh-oh!

So what went wrong? By default regular expressions are greedy, which means that they make the longest
possible match. Turning on dot all mode causes the regex to match everything from the very first
quotation mark in the entire text through the very last (since quotation mark characters are also
characters, the dot in the regex " . +" matches the quotation marks between the first and last ones in the
document, just like it matches any other character). Turning off dot all mode won't fix this because some
quotations do cross line boundaries, and we need to be able to recognize and match them.

We can resolve the problem by turning on dot-all mode (since we have to match quotations that span line
breaks) but also specifying that the match should be non-greedy, that is, that we should make the shortest
possible match (instead of the longest, which is the default), and we do this by following the repetition
indicator (the plus sign) with a question mark. (Note that the question mark you met earlier is a
repetition indicator that means “zero or one instance” of whatever it follows. Here is isn’t a repetition
indicator, though; here it means “don’t be greedy”. So if the same symbol can have two such different
meanings, how does a regex processor know which meaning to apply?) In other words " . +? " will
correctly treat two full quotations on the same line as separate quotations. Try it. You should now
correctly be matching each quotation fully, regardless of whether it spans a new line character and
regardless of the number of quotations on a line.

Once you can do that, you can capture the text between the quotation marks and write it into the output
between <quote> tags. Don’t include the quotation mark characters themselves in the capture group;
those are plain-text pseudo-markup, and now that you're going to be tagging quotations with real
markup, you don’t want the quotation mark characters included.

Cleanup
http://dh.obdurodon .org/regex-assignment-02 .xhtml 5/6

4/3/2018 Regex assignment #2

At this point you can fix the title and author lines manually (we’d just delete the line that reads “bYy”, since
the new <author> tags will make that explicit), as well as the table of contents, and you need to wrap the
entire document in a root element (such as <book>). If you'd like a little more regex practice, instead of
fixing the table of contents manually, you can use regex find-and-replace to tag it. If you select the table of
contents and then open the find-and-replace dialog, you can check the “Only selected lines” box under
“Scope” to say that instead of applying find-and replace operations to the entire file, you’ll apply them only
to the selected lines. You may want to start by stripping out incorrect markup that you've inserted when
your global find-and-replace operations earlier changed these lines, as well—and of course you’ll want to
do that with a regex that matches any tag and replaces it with nothing (that is, deletes it). Once you've
done that, these lines look like title lines, except that they have space characters before them, and you can
use a regex that matches one or more space characters to help match them. You can then capture each line
(throwing away the leading white space by excluding it from the capture) and wrap itin <title> tags.
You'll want to get rid of the paragraph tags that are wrapping the whole table of contents, since it isn't a
paragraph, and replace it with something like <toc> (for “table of contents”).

Checking your results

Although you’ve added XML markup to the document, <oXygen/> remembers that you opened it as plain
text, which means that you can’t check it for well-formedness. To fix that, save it as XML with File — Save
as and give it the extension “.xml”. Even that doesn’t tell <oXygen/> that you’'ve changed the file type,
though; you have to close the file and reopen it. When you do that, <oXygen/> now knows that it's XML, so
you can verify that it’s well formed in the usual way: Control+Shift+W on Windows, Command+Shift+W
on Mac, or click on the arrow next to the red check mark in the icon bar at the top and choose “Check well-
formedness”.

What to submit

We don’t need to see the XML that you produce as the output of your transformation because we’re going
to recreate it ourselves anyway, but you do need to upload a step-by-step description of what you did.
Your write-up can be brief and concise, but it should provide enough information to enable us to duplicate
the procedure you followed.

[f you don’t get all the way to a solution, just upload the description of what you did, what the output
looked like, and why you were not able to proceed any further. As always, you're encouraged to post any
questions on the discussion boards, in this case in the regex forum.

http://dh.obdurodon .org/regex-assignment-02 .xhtml 6/6

4/3/2018 Regex assignment #3
92

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2015-07-29T13:11:20+0000

Regex assignment #3

The text

Oscar Wilde’s The importance of being Earnest is available in plain text from Project Gutenberg at
http://www.gutenberg.org/cache/epub/844 /pg844.txt. Download the text and manually remove the
Project Gutenberg boilerplate from the beginning and end, so that all that remains is the text as Oscar
Wilde wrote it.

The task

Your task is to prepare an XML-encoded digital edition of this play from the plain text using search and
replace operations to introduce the markup. The specific markup you use is up to you, but as is
appropriate for a play, you will want your XML to identify at least acts, scenes, speeches, speakers, and
stage directions. Note that your goal is to use search and replace operations, with or without regular
expressions, to create descriptive well-formed XML markup (rather than, for example, to create a
presentational HTML editon). You should not use manual tagging except in situations that occur so rarely
that they don'’t justify search and replace operations or stylesheet transformations (such as tagging the
title of the play or creating a root element).

When you have completed your tagging, you should upload the XML document you create along with a
separate page describing any global search and replace operations you used (through the search and
replace dialog box) to introduce markup.

There is no single target output for this assignment. Any well-formed markup you create that is
appropriate and sensible for the play is fine.

http://dh.obdurodon.org/regex-assignment-03.xhtml 11

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.gutenberg.org/cache/epub/844/pg844.txt
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 Test #3: Regular Expressions
93

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-02-16T17:35:24+0000

Test #3: Regular Expressions

The task

For this test, we are asking you to up-convert a one-act play called The bicyclers and three other farces
using regular expressions, which is available at http://dh.obdurodon.org/2018-02-16_regex-test.txt.
Please copy and paste the text of the play into a plain text file in <oXygen/> and use the regex search and
replace function to add structural tags to the play.

We encourage you to familiarize yourself with the format of the document (e.g., the division of scenes, the
format of speeches and speaker names, etc.) before beginning your tagging. As was the case with the
regex homework assignments, we recommend that you first search for any reserved characters and
normalize the new line characters in the play, and then use regex to tag specific textual components. Our
solution tagged the following:

¢ Each of the four scenes should be wrapped in <scene> tags, and the title of each scene (inside the
<scene> element) should be wrapped in <title> tags.

¢ The setting description that precedes each individual scene should be wrapped in <sceneDesc>
tags.

¢ The list of characters at the beginning of each scene should be wrapped, all together; in a single set
of <characters> tags. (See also the bonus question, below.)

¢ All stage directions should be wrapped in <stage> tags.

* Each speech in the play, comprising both the speaker name and the spoken lines, should be
wrapped in <speech> tags.

* Inside each <speech> element, the name of the speaker should be wrapped in <speaker> tags
and the spoken text (all of it, together) should be wrapped in a single pair of <11ne> tags.

A sample speech might be tagged as follows:

i <speech> ;
<speaker>Mrs. Perkins</speaker>
<lines><stage>foreseeing a quarrel</stage> Thaddeus! 'Sh! Ah, by-the-
i way, Mr. Bradley, where is Emma this evening? I never knew you to be i
; separated before.</lines> :

</speech>

Bonus: Within the list of character names at the beginning of each scene, wrap each item in the list in
<character> tags, with the character’s name in <name> tags and his or her character description in
<desc> tags.

http://dh.obdurodon.org/2018-02-16_regex-test.xhtml 172

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/2018-02-16_regex-test.txt
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 Test #3: Regular Expressions

In our solution, we performed each of these steps with a single search and replace, but any solutih that
makes meaningful use of regex to tag your text is fine. Remember to tell us explicitly when you use
“dot matches all”".

You should pseudo mark-up whenever possible (for example,, the period that follows each speaker’s name
and the “CURTAIN” string that denotes the end of a scene). You should manually tag the play title and
contents at the very beginning before you begin your up-conversion, or you should remove them until
you’ve completed your up-conversion, tagging them at the end.

What to submit

Upload to CourseWeb only a step-by-step description of how you performed your up-conversion. We will
then apply the steps to the plain text play to recreate your XML result. Don’t forget to save your tagged
file as XML file after you finish your work and then reopen it in <oXygen/> to check for well-
formedness!

http://dh.obdurodon.org/2018-02-16_regex-test.xhtml 2/2

4/3/2018 XPath assignment #1
95

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2015-02-08T19:27:00+0000

XPath assignment #1

You can find an XML (TEI) version of Shakespeare’s Hamlet at http://dh.obdurodon.org/bad-hamlet.xml.
We’ve deliberately damaged some of the markup in this edition to introduce some inconsistencies, but the
file is well-formed XML, which means that you can use XPath to explore it. You should download this file
to your computer (typically that means right-clicking on the link and selecting “save as”) and open it in
<oXygen/>.

After you've completed your homework, save your answers to a file and upload it to CourseWeb as an
attachment. (Please use an attachment! If you paste your answer into the text box, CourseWeb may munch
the angle brackets.) Some of these tasks are thought-provoking, and even difficult. If you get stuck, do the
best you can, and if you can’t get a working answer, give the answers you tried and explain where they
failed to get the results you wanted. Sometimes doing that will help you figure out what’s wrong, and even
when it doesn'’t, it will help us identify the difficult moments. These tasks require the use of path
expressions, predicates, and the functions count() and not(), but they should not require any other XPath
functions. There may be more than one possible answer.

Using the Bad Hamlet document and the XPath browser window in <oXygen/>, construct XPath
expressions that will do the following (give the full XPath expressions in your answers, and not just the
results):

1. Hamlet, like a typical Shakespearean tragedy, contains five acts, each of which contains scenes. Both
acts and scenes are encoded as division (<d1iv>) elements.

a. How can XPath tell them apart?

b. What XPath would find just the acts?

c. What XPath would find just the scenes?

d. What XPath would find just the scenes in Act II1?

2. Stage directions (<stage>) occur in a variety of contexts.

a. What XPath would find all of the stage directions that are inside a metrical line (<1>), that is,
between the starting <1> and the ending </1>. How many are there?

b. What XPath would find all of the stage directions that are directly inside a speech (<sp>), that
is, inside a speech but not inside a line within a speech?

c. What XPath would find all of the stage directions that are not directly inside a speech or a line.
How many are there?

d. For the stage directions you identified in #2c, above, write an XPath expression that will
return not the <stage> elements themselves, but their parent elements, whatever they
might be. What are those parent elements? (You haven't yet learned the XPath to return just
the names of the parent elements [rather than the elements themselves], but you can locate
them, click on each one in the list <oXygen/> returns, and look at it directly.)

http://dh.obdurodon.org/xpath-assignment01.html 171

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/bad-hamlet.xml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XPath assignment #2
96

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2015-08-24T19:05:34+0000

XPath assignment #2

You can find an XML (TEI) version of Shakespeare’s Hamlet at http://dh.obdurodon.org/bad-hamlet.xml.
We’ve deliberately damaged some of the markup in this edition to introduce some inconsistencies, but the
file is well-formed XML, which means that you can use XPath to explore it. You should download this file
to your computer (typically that means right-clicking on the link and selecting “save as”) and open it in
<oXygen/>.

After you've completed your homework, save your answers to a file and upload it to CourseWeb as an
attachment. (Please use an attachment! If you paste your answer into the text box, CourseWeb may munch
the angle brackets.) Some of these tasks are thought-provoking, and even difficult. If you get stuck, do the
best you can, and if you can’t get a working answer, give the answers you tried and explain where they
failed to get the results you wanted. Sometimes doing that will help you figure out what’s wrong, and even
when it doesn'’t, it will help us identify the difficult moments. These tasks require the use of path
expressions, predicates, and the functions count () and not (), but they should not require any other
XPath functions. There may be more than one possible answer.

Using the Bad Hamlet document and the XPath browser window in <oXygen/>, construct XPath
expressions that will do the following (give the full XPath expressions in your answers, and not just the
results):

1. Most (not all) speeches in Hamlet contain, as their immediate children, mostly metrical line (<1>)
and “anonymous block” (<ab>) elements (an anonymous block is the TEI element that the tagger
used to represent a non-metrical speech line). Speeches also typically contain, as immediate child
elements, <speaker > elements, and may also contain stage directions (<stage>). We have
deliberately left out at least one other type of subelement found as an immediate child of speech
elements. Based on this understanding:

o What XPath would find all of the speeches that do not contain any metrical lines as immediate
children? How many are there?

o What XPath would find all of the speeches that do not contain either any metrical lines (<1>)
or any anonymous blocks (<ab>) as immediate children? How many are there? What do they
contain instead? (As in #2d in XPath assignment #1, you haven’t yet learned the XPath to
return a list of the types of elements they do contain, but if you find them all, you can scan the
brief list that <oXygen/> returns, click on each one to see it in context, and see what’s going
on.)

2. Explain why the following four XPath expressions return two different results, and describe in prose
what each of them does return, and why:

//sp|@who="Hamlet"]/1[1]

/descendant::sp[@who="Hamlet"]/1[1]

(//sp[@who="Hamlet"]/1)[1]

(/descendant::sp[@who="Hamlet"]/1)[1]

o

o O ©O

http://dh.obdurodon.org/xpath-assignment-02 xhtml 171

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/bad-hamlet.xml
http://dh.obdurodon.org/xpath-assignment01.html
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XPath assignment #3
97

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2015-10-11T18:32:10+0000

XPath assignment #3

You can find an XML (TEI) version of Shakespeare’s Hamlet at http://dh.obdurodon.org/bad-hamlet.xml.
We’ve deliberately damaged some of the markup in this edition to introduce some inconsistencies, but the
file is well-formed XML, which means that you can use XPath to explore it. You should download this file
to your computer (typically that means right-clicking on the link and selecting “save as”) and open it in
<oXygen/>.

After you've completed your homework, save your answers to a file and upload it to CourseWeb as an
attachment. (Please use an attachment! If you paste your answer into the text box, CourseWeb may munch
the angle brackets.) Some of these tasks are thought-provoking, and even difficult. If you get stuck, do the
best you can, and if you can’t get a working answer, give the answers you tried and explain where they
failed to get the results you wanted. Sometimes doing that will help you figure out what’s wrong, and even
when it doesn'’t, it will help us identify the difficult moments. These tasks require the use of path
expressions, predicates, and functions. There may be more than one possible answer.

Using the Bad Hamlet document and the XPath browser window in <oXygen/>, construct XPath
expressions that will do the following (give the full XPath expressions in your answers, and not just the
results):

1. What XPath expressions will find the last stage direction <stage> in the entire document? (Note:
there should be only one!)

2. What XPath expression will find the last member in the cast list at the beginning of the document
and return the value of the @xm1 : id attribute that is associated with it?

3. What XPath expression will find all <sp> elements with more than 8 line (<1>) subelements? You'll
need to use the count () function (Kay 733-34).

4. Building on your answer to the preceding question, what XPath expression will tell you how many
line subelements each of those speeches actually has?

5. Building on your answers to the preceding two questions, what XPath expression will find the
speakers of all speeches that have more than 8 line subelements? Once you've found the speeches
that have more than 8 lines, you can find the speakers of those speeches by just adding another path
step, but you'll get some duplication, since a single person may have more than one long speech.
Your answer to this question should get rid of the duplicates, and return just a list of names of
speakers without duplication. You'll need to use thedistinct-values () function (Kay 749-50).

Optional bonus questions

1. Question #1, above, asked how you to provide an XPath that would find the last stage direction
(<stage>) in the play. What XPath would find the last line (<1>) in the play? What XPath would
find the last stage direction or line (that is, whichever of the last stage direction and last line comes
last)? You'll need to use the union operator (Kay 628-31).

http://dh.obdurodon.org/xpath-assignment-03 .xhtml 172

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/bad-hamlet.xml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XPath assignment #3

2. Question #2, above, asked you to provide an XPath that would find the @xm1:id associated3with
the last cast member in the cast list. What's the difference between an XPath that returns the
@xm1 :id attribute itself and an XPath that returns just the value of the @xm1 : id attribute? That is,
what are the two XPath expressions and what object does each of them return? You'll need to use
thedata() orstring() function (Kay 741-43, 877-79).

3. Question #3, above, asked you to provide an XPath that would find all of the speeches (<sp>
elements) with more than 8 line (<1>) subelements. What are the XPaths to find speeches with
more than 8 line child elements and speeches with more than 8 descendant line elements? How do
those results differ? If there are descendant line elements that are not children of a speech, what is
their parent? If you don’t know the types of their parent elements in advance, what XPath
expression will tell you?

http://dh.obdurodon.org/xpath-assignment-03 .xhtml 2/2

4/3/2018 XPath assignment #4
99

<o00>—-+<dh> Digital humanities

Maintained by: David . Birnbaum (djbpitt@gmail.com)
Last modified: 2014-09-28T20:57:54+0000

XPath assignment #4

You can find an XML (TEI) version of Shakespeare’s Hamlet at http://dh.obdurodon.org/bad-hamlet.xml.
We’ve deliberately damaged some of the markup in this edition to introduce some inconsistencies, but the
file is well-formed XML, which means that you can use XPath to explore it. You should download this file
to your computer (typically that means right-clicking on the link and selecting “save as”) and open it in
<oXygen/>.

After you've completed your homework, save your answers to a file and upload it to CourseWeb as an
attachment. (Please use an attachment! If you paste your answer into the text box, CourseWeb may munch
the angle brackets.) Some of these tasks are thought-provoking, and even difficult. If you get stuck, do the
best you can, and if you can’t get a working answer, give the answers you tried and explain where they
failed to get the results you wanted. Sometimes doing that will help you figure out what’s wrong, and even
when it doesn'’t, it will help us identify the difficult moments. These tasks require the use of path
expressions, predicates, and functions. There may be more than one possible answer.

Using the Bad Hamlet document and the XPath browser window in <oXygen/>, construct XPath
expressions that will do the following (give the full XPath expressions in your answers, and not just the
results):

1. What XPath will return a hyphen-separated list of all characters without duplicates. The resulting
list will look something like:

Our solution usesdistinct-values () and string-join(). Note that there are several ways
to identify the characters in this markup, including the <castList> element, the <speaker>
elements, and the @who atribute on the <sp> element. Which should you use and why?

2. Most metrical lines (<1>) have an @xm1 : id attribute with a value like “sha-ham101010”, ending in
a six-digit number. The first digit is the act, the next two the scene, and the last three the line in the
scene. Some metrical lines are split across multiple speakers, and in that case the six-digit number
in the @xm1 : id value is followed by “I” (initial part), “M” (middle part), or “F” (final part). In a few
places there may be more than one middle part, and in those cases the “M” is followed by a one-digit
number. For example, one of Hamlet’s lines is:

<1l xml:id="sha-ham502277M2" n="277">0ne.</1>

which is the second middle part. What XPath will return the number of <1> elements that are
middle parts? Our solution uses count () and contains ().

http://dh.obdurodon.org/xpath-assignment04.html 172

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/bad-hamlet.xml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018

XPath assignment #4

3. Sometimes Rosencrantz speaks by himself and sometimes he speaks in unison with Guildef{8tern.

a. What XPath finds all of the speeches by Rosencrantz, whether alone or together with
Guildenstern? Our solution uses a single instance of contains ().
b. Can you think of an alternative solution that doesn't use any functions (just a predicate)?

4. The string-length () function can be used in two ways. You can wrap it around an argument, so

that, for example, string-length('Hi, Mom! ') will return 8, the length in character count of
the string inside the quotation marks. It can also be used as part of a path expression, so that, for
example, if the XPath //sp returns a sequence of all <sp> elements, //sp/string-length(.)
returns a sequence of the lengths of all <sp> elements as measured by counting characters. This
works by finding all of the <sp> elements and then (next path step) getting the string length of each
one. Remember that the dot inside the parentheses refers to the current context node, which is the
member of the sequence of <sp> nodes that is being processed at the moment. We need to use the
subterfuge because string-length(//sp) generates an error. The problem is that string-
length () can take only a single argument, and //sp returns more than one item. Putting the
string-length() function on its own path step with a dot inside means that it applies once for
every <sp> element, and that each time it applies, it has just a single argument.

Use this information to identify an XPath that finds the length of the longest speech. What length
does it return? Our solution uses string-length() and max().

. Optional, challenging question: Given the preceding solution, how can you use that XPath to retrieve

the longest <sp> itself? No fair checking the length and then writing a separate XPath that looks for
that number. Your answer must find the longest speech without your knowing how long it is. Our
solution doesn’t require any additional functions beyond the ones used in #4, but it does use a
complicated predicate.

. Optional, very challenging question: What XPath produces a numbered list of all characters, without

any duplicates, which should look something like:

1. Claudius

2. Hamlet

3. Polonius

4. ..
There are several possible solutions, each of which raises issues that you may not have seen before.
If you get an error message, try to figure out what it means and how to resolve it.

http://dh.obdurodon.org/xpath-assignment04.html 2/2

4/3/2018

Test #4: XPath
101

<00>—-<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-03-02T00:17:53+0000

Test #4: XPath

The task

Using Bad Hamlet, provide an XPath expression that retrieves:

1.

All speeches (<sp>) by Ophelia that contain Hamlet’s name. Requires, at least in our solution,
contains (). (There are two such speeches.)

. A semicolon-separated list of all unique speakers (<speaker>) in Act IV, without duplicates.

Requires, at least in our solution, string-join() anddistinct-values (). Your list will
include, among other, “Rosencrantz”, “Guildenstern”, and, because they sometimes speak together,
“Rosencrantz and Guildenstern”. For the purpose of this test, you don’t have to get rid of the last of

these (but see the bonus question, below).

. The number of speeches (<sp>) in each act (//body/d1i V). Our solution requires count (). (The

number of speeches you should find are 251 for Act 1, 201 for Act 2, 249 for Act 3, 179 for Act 4, and
257 for Act 5.)

. The speaker elements (<speaker>) for all speeches (<sp>) that are greater than 4000 characters

long. Requires, at least in our solution, string-1length (). Hint: to approach this in stages: 1)
find all speeches; 2) filter them to keep just the ones that are more than 4000 characters in length;
3) find the speakers of those speeches. (There are two such speeches, one by “Hamlet” and one by
“Ghost”.)

. This question has four parts, which build incrementally on one another:

a. The number of lines (<1> elements) in each speech (<sp> element). Here and in the other
parts of this question, count the descendants of the speech, not just the children.

b. The number of lines in the longest speech (measured in <1> elements). The answer is 58.

c. The longest speech (<sp>) itself. It's the speech by Hamlet that begins with the line that has
the @xm1 : id value “sha-ham202553".

d. The <head> of the scene that contains that speech. The answer is “Act 2, Scene 2”.

Bonus

How can you use XPath to get the semi-spurious “Rosencrantz and Guildenstern” out of the answer to #27?
Your answer should cater to the following possibilities:

There could be other pairs of simultaneous speakers, that is, Horatio and Ophelia might, in principle
also speak together.

Although Rosencrantz and Guildenstern both happen to speak individually in this act, in principle
there might be characters who speak together but not separately, and you need to list them
individually in your list. For example, if Rosencrantz spoke separately and with Guildenstern, and
Guildenstern spoke only together with Rosencrantz, your list of speakers should include both of
them individually.

http://dh.obdurodon.org/2018-03-02_xpath-test.xhtml 172

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/bad-hamlet.xml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 Test #4: XPath

e It's possible in principle for there to be more than two simultaneous speakers, and in that ¢¥se they
might be joined with both commas and “and”, along the lines of “King, Gertrude, Hamlet, and
Servant”. These persons may or may not also speak individually, so you need to be sure that they all
make it into your list as separate entries.

http://dh.obdurodon.org/2018-03-02_xpath-test.xhtml 2/2

4/3/2018 XQuery assignment #1
103

<o00>—-+<dh> Digital humanities

Maintained by: David]. Birnbaum (djbpitt@gmail.com)
Last modified: 2015-03-23T03:47:54+0000

XQuery assignment #1

Use the 42 Shakespeare plays that have been uploaded to Obdurodon to do the following:

1. Find all of the titles of all of the Shakespeare texts in the corpus. You'll need to read our posting on the main course page on
Obdurodon for information about how to address the collection of plays, and also about how to retrieve the full text of one of
the plays so that you can look at it and see where the title is, which you’ll need to know in order to construct the XPath to
retrieve it. The simplest answer is a single XPath expression. The output should look something like (there are 42 of them):

———

<title xmlns="http://www.tei-c.org/ns/1.0">0thello, the Moor of Venice</title>
<title xmlns="http://www.tei-c.org/ns/1.0">The Second Part of King Henry the Fourth</t1t1e>
<title xmlns="http://www.tei-c.org/ns/1.0">The Taming of the Shrew</title>

...

Here are two important issues:
o The Shakespeare texts are in the TEI namespace. To use namespaces in XQuery, you declare them as follows:

———

...

This should go on the second line of your XQuery, just below the XQuery declaration. It declares that you will use the
prefix tei : to refer to elements in the TEI namespace. That means, for example, that you should describe the TEI
header as tei:teiHeader.

o There are several <title> elements in the plays, and not all of them are titles of plays. Some, for example, may be
titles of acts or scenes. You can find the titles of plays by using XPath, and you may want to examine a sample play to
remind yourself of how the TEI encodes that type of title.

2. Modify your XPath above to return just the text of the titles, without the tags. You can do that by using text () ordata() or
string() (which you might want to look up in Kay or at w3schools). Your answer should look something like:

———

Othello, the Moor of Venice
The Second Part of King Henry the Fourth
The Taming of the Shrew

...

3. Fourteen of the 42 plays have more than 40 unique speakers. Find those plays and return their titles. You will need to use
count() anddistinct-values() (and don’t forget the TEI namespace!). Find the collection, drill down to the <TEI>
elements in the collection (you know there are 42 of them), then filter them based on whether or not they contain more than
40 distinct <speaker > element values. Once you're getting the 14 plays that meet that description, you can add a path step
to retrieve their titles.

4. Modify your solution to the preceding question #3 to return just the text of the play titles, without the <t1it1le> tags. You can
take the same approach as you did for the transition from question #1 to question #2.

Copy and paste your XQuery expressions from eXide into a plain-text document (you can create one in <oXygen/> or in the plain-
text editor of your choice) and upload that document as your homework submission. Do not use Word, which may turn your well-
formed straight apostrophes and quotation marks into curly ones, which don’t have the same meaning and which will result in invalid
XQuery code. We do not need the results returned by your query; all we need is the XQuery expression itself.

http://dh.obdurodon.org/xquery-assignment-01.html 171

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/xquery-abcs.xhtml
http://www.w3schools.com/
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XQuery assignment #2
104

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2017-04-03T15:31:32+0000

XQuery assignment #2

About FLWOR constructions

This assignment requires the use of a FLWOR construction, so you might want to review the assigned
reading before tackling it. Be sure that you understand what each of the components of a FLWOR does,
and how they interact. For example, you can get the title of every play in the corpus with a single XPath
statement:

xquery version "3.0";
declare namespace tei="http://www.tei-c.org/ns/1.0";
collection('/db/apps/shakespeare/data')//tei:titleStmt//tei:title

xquery version "3.0";

declare namespace tei="http://www.tei-c.org/ns/1.0";
let $plays := collection('/db/apps/shakespeare/data')
for $play in $plays

order by $play

return $play//tei:titleStmt/tei:title

We use the 1et statement to set a variable $plays equal to the collection of all 42 plays. We then use a
for statement to iterate over the plays, doing something once for each play. Remember that the
components of a FLWOR expression must occur in FLWOR (for, let, where, order by, return) order, except
that you can have as many for and 1et statements as you want, and they can occur in any order with
respect to one another. If there is a where statement, it must follow all of the for and Let statements; if
there is an order by statement, it must come next; and the return statement must come last. There
must be at least one for or Let statement and exactly one return statement; everything else is
optional.

While we iterate over the plays with our for statement, we use an order by statement to sort them
alphabetically, taking advantage of the fact that the first textual content of each play is the title, so
alphabetizing by the entire text of the play is equivalent to alphabetizing by the title. Note that when we
return the title of each play, the XPath in the return statement has to begin with the variable $play, so
that on each of the 42 iterations we'll be getting the title of the play we’re looking at at that moment.

The texts

http://dh.obdurodon.org/xquery-assignment-02.html 1/4

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XQuery assignment #2

Obdurodon contains the text of forty-two Shakespearean plays. In the TEI markup for these play$®®
speeches are <sp> elements and the speakers are <speaker> elements that are their first children. For
example:

<sp who="Roderigo">

<speaker>Roderigo</speaker>

<1 xml:id="sha-o0thl01040F" n="40">I would not follow him then.</1>
</sp>

There are 966 distinct speaker names (values of the <speaker> element) in the entire corpus, some of
which show up in more than one play. Three of the names show up in more than ten plays: there is a
character called “Messenger” in 22 plays, one called “All” in 20 plays, and one called “Servant” in 18.
(These aren’t the same messenger or all or servant, of course!) Here are the details:

* Messenger appears in 22 plays: Antony and Cleopatra; Coriolanus; Cymbeline; Hamlet, Prince of
Denmark; Julius Caesar; King Lear; Macbeth; Much Ado About Nothing; Othello, the Moor of Venice;
Pericles, Prince of Tyre; The First Part of King Henry the Fourth; The First Part of King Henry the
Sixth; The Life and Death of King John; The Life of King Henry the Eighth; The Merchant of Venice;
The Second Part of King Henry the Fourth; The Second Part of King Henry the Sixth; The Taming of
the Shrew; The Third Part of King Henry the Sixth; The Tragedy of King Richard the Third; Timon of
Athens; Titus Andronicus

e All appears in 20 plays: A Midsummer Night's Dream; All’s Well That Ends Well; Antony and
Cleopatra; As You Like It; Coriolanus; Cymbeline; Hamlet, Prince of Denmark; Julius Caesar;
Macbeth; Pericles, Prince of Tyre; The First Part of King Henry the Sixth; The Life of King Henry the
Eighth; The Life of King Henry the Fifth; The Merry Wives of Windsor; The Second Part of King
Henry the Sixth; The Taming of the Shrew; The Third Part of King Henry the Sixth; The Tragedy of
King Richard the Second; Timon of Athens; Titus Andronicus

e Servant appears in 18 plays: All’'s Well That Ends Well; Hamlet, Prince of Denmark; Julius Caesar;
Macbeth; Measure for Measure; Pericles, Prince of Tyre; Romeo and Juliet; The Comedy of Errors;
The First Part of King Henry the Fourth; The First Part of King Henry the Sixth; The Life of King
Henry the Eighth; The Merry Wives of Windsor; The Second Part of King Henry the Sixth; The
Taming of the Shrew; The Tragedy of King Richard the Second; The Winter’s Tale; Timon of Athens;
Twelfth Night or What You Will

Assignment

Your assignment is to write XQuery that will query the collection of plays, find the three <speaker>
element values that occur in more than ten plays, and return a list of those elements along with the names
of the plays in which they occur. That is, you should write XQuery that generates the basic information in
the preceding list. Once your XQuery is working, copy it into a plain-text document (not a Word
document), save it, and upload it to CourseWeb. You can create a plain-text (that is, “.txt”) document in
<oXygen/> by creating a new document of type “Text”. We don’t need to see the output of your XQuery; all
we need is the XQuery code itself.

Our list includes some enhancements that you can consider optional for this assignment, but if you get the
basic solution, we hope you'll try them:

»” o«

e We've added some plain text (“ appears in ”, “ plays: ”) and punctuation (the list of play titles is
preceded by a colon and the individual titles are separated by semicolons). Whether you use this
specific formatting is optional, but you have to use some sort of formatting to produce a readable
list. An alternative might be to output HTML nested lists, where the outer list gives the character

http://dh.obdurodon.org/xquery-assignment-02.html 2/4

4/3/2018 XQuery assignment #2

names, with the frequency values after the names in parentheses, and the sublists under ed%h name
contain the titles of the relevant plays. The formatting is up to you, as long as it’s clear, legible, and
sensible.

¢ We've sorted the results in descending order of frequency, so that the character name that appears
22 times is first, then the one that appears 20 times, then the one that appears 18 times.

e We've alphabetized the titles of the play. We had to do that explicitly in our XQuery; by default they
come out in no particular order (well, there is a particular order, but it’s the order in which they
were uploaded into eXist, so it isn’t meaningful to humans).

¢ The XML uses straight apostrophes in the titles, but we've replaced them with curly (typographic)
ones.

Our solution used several 1et statements to configure “convenience” variables. We used distinct-
values () and a for statement to find and iterate over all of the distinct <speaker> names in the
collection. We used the count () function and a where statement to find all of the names of speakers
that occur in more than ten plays. Finally, we used both concat () and string-join() inour return
statement to glue the pieces together. For the optional parts, we used an order by statement to sort the
results in descending order of frequency, and to alphabetize the play titles we used an embedded FLWOR
statement. That means that we set a variable equal to the return of a FLWOR statement, which is a
powerful way of using FLWOR not just for the main program flow, but also to control subcomponents. We
used the XPath translate () function to fix the apostrophe.

This is not a difficult problem intellectually: you can paraphrase it easily as “find all of the speaker names
that show up in more than ten plays.” It is, however, a complicated pattern to formalize, and because the
XQuery version has to be explicit, it is longer than the prose formulation. We would suggest breaking the
problem down into subcomponents like

¢ How would you find all of the plays in the corpus?

* How would you find the title of a play, or of all of the plays in the corpus?

* How would you find all all of the speakers (that is, all of the <speaker> elements) in a play or in the
corpus?

¢ How would you find all of the distinct speakers in a play or in the corpus?

¢ How would you find all the plays in the corpus in which a speaker with a certain name appears, and
then count them?

¢ How would you find all the plays in the corpus in which a speaker with a certain name appears, and
then list their titles?

¢ [fyou can count the number of plays in which each distinct speaker name occurs in the corpus, how
can you use that information to sort your results in descending order by frequency?

¢ Ifyou can find the titles of the plays in which a particular speaker name appears, how can you sort
them alphabetically?

Some of the preceding questions are easier than others, but getting all the way to a solution means getting
them all correct and stitching them together effectively, which is why we recommend developing your
XQuery step by step and testing it after every step, so that when it breaks, you’ll know which statement
caused the problem. If you can’t get all the way to a solution, that’s okay, but you can’t just give up; what
you need to do instead is submit your solutions to as many of the pieces as you can (both the ones we list
above and any others that you recognize as important). While this particular assignment is a bit (okay,
more than a bit) artificial, the techniques required are very common in Real Life: find information across
documents and create a report based on an aggregated result.

Watch out for namespaces!

http://dh.obdurodon.org/xquery-assignment-02.html 3/4

4/3/2018 XQuery assignment #2

The plays are all in the TEI namespace. This means that you’ll want to declare a namespace prefi¥and
map it to the TEI namespace, as you did in the last assignment. What tripped up several people in the last
assignment, though, is that all element names in your XPath expressions require the namespace prefix.
For example, if you've set the value of a variable $plays to the 42 play documents in the corpus and if
you've also set the prefix te1 : to point to the TEI namespace, you can get the titles of all of the plays with
the XPath expression $plays//tei:titleStmt/tei:title.Ifyou forget the prefix on either
<titleStmt> or <title>, though, you won't get any results because you’ll be looking for one or both
of those elements in no namespace, and every element in this corpus is in the TEI namespace.

http://dh.obdurodon.org/xquery-assignment-02 .html 4/4

4/3/2018 XSLT assignment #1
108

<o00>—-<dh> Digital humanities

Maintained by: David J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-02-28T14:12:07+0000

XSLT assignment #1

The assignment

Your assignment is to create an XSLT stylesheet that will transform Bad Hamlet into a hierarchical outline of
the titles of acts and scenes in HTML. This isn’t very interesting on its own, of course, but if you were
transforming the entire document into HTML for publication on the web, this might serve as the skeleton. It
might also stand on its own as a table of contents at the top of such a publication, so that the reader could click
on the title of a scene to jump to that location in the file.

If you're feeling adventurous, you're welcome to include more information, whether of a publication-oriented
sort (e.g., speakers, speeches, stage directions, etc., as if you were publishing the entire play) or as a foray into
exploration and analysis (e.g., list of characters who speak in each scene, perhaps with a count of their
speeches, length of speeches, etc). The only required content of your homework, though, is the HTML outline
of act and title chapters, which might look something like:

Act1

Act 1, Scene 1
Act 1, Scene 2
Act 1, Scene 3
Act 1, Scene 4
Act 1, Scene 5

O O O O o

Act 2
o Act2,Scene 1
o Act 2, Scene 2
Act3
o Act3,Scene 1
o Act 3, Scene 2
o Act 3, Scene 3
o Act 3, Scene 4
Act 4

Act 4, Scene 1
Act 4, Scene 2
Act 4, Scene 3
Act 4, Scene 4
Act 4, Scene 5
Act 4, Scene 6
Act 4, Scene 7

O 0O 0O O o 0 o

Act 5
o Act5,Scene 1
o Act5, Scene 2

http://dh.obdurodon.org/xslt-assignment-01.xhtml 1/4

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/bad-hamlet.xml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XSLT assignment #1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html

SYSTEM "about:legacy-compat">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Hamlet</title>
</head>
<body>

Act 1

Act 1, Scene 1</1i>
Act 1, Scene 2</1i>
Act 1, Scene 3</1i>
Act 1, Scene 4</1i>
Act 1, Scene 5</1i>

</1i>
Act 2

Act 2, Scene 1</1i>
Act 2, Scene 2</1i>

</1i>
Act 3

Act 3, Scene 1</11i>
Act 3, Scene 2</1i>
Act 3, Scene 3</1i>
Act 3, Scene 4</11i>

</1i>
Act 4

Act 4, Scene 1</11i>
Act 4, Scene 2</11i>
Act 4, Scene 3</1i>
Act 4, Scene 4</1i>
Act 4, Scene 5</1i>
Act 4, Scene 6</1i>
Act 4, Scene 7</1i>

</1i>
Act 5

Act 5, Scene 1</1i>
Act 5, Scene 2</1i>

</1i>

</body>
</html>

The DOCTYPE declaration at the top (<! DOCTYPE html SYSTEM "about:legacy-compat">)isa
schema declaration. It is similar to the declaration that <oXygen/> creates when you author a new XHTML
document by hand (<!DOCTYPE htm1>), except that, for obscure reasons that aren’t very interesting, it takes

http://dh.obdurodon.org/xslt-assignment-01.xhtml 2/4

4/3/2018 XSLT assignment #1

a different form when you generate it as part of an XSLT transformation. You can think of it as a magit'®
incantation, and we explain below how to invoke it.

We’ve used HTML unordered lists () elements. The only content allowed inside a element is list
items (<11 >), and we’ve nested them, so that each each list item that represents an act contains the title of
that act followed by an embedded that contains, in turn, a separate list item for the title of each scene.
This isn’t the only way to format this type of outline and you’re welcome to take a different approach. For
example, if you'd like to include the full text of the play, that is, the stage directions and speeches, the
embedded list format isn’t really appropriate. In that case, we would use the HTML header elements (<h1>
through <h6>) to create hierarchical headers. You can read more about HTML lists and headers at
http://www.w3schools.com.

Before you begin

Both your input document and your output documents have to be in the correct namespace, and you need to
tell your XSLT stylesheet about that.

* Input namespace: Your input document, Bad Hamlet, is in the TEI namespace, which means that your
XSLT stylesheet must include an instruction specifying that when it tries to match elements, it needs to
match them in that namespace. You specify the namespace of the input document by creating a
@xpath-default-namespace attribute on the <xsl:stylesheet> root element of your XSLT
stylesheet and setting it equal to the @xm1ns value of the input document. When you create a new XSLT
document in <oXygen/> it won’t contain that instruction, so you need to add it (in blue below).

* To ensure that the output will be in the HTML namespace, which is required for any HTML web page, you
need to specify a default output namespace declaration (in fuchsia below).

Finally, to output the required DOCTYPE declaration, we also create an <xs1:output> element as the first
child of our root <xsl:stylesheet> element (in green below). Our modified skeleton looks like the
following:

<?xml version="1.0" encoding="UTF-8"7?> ;
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="3. 0"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns="http://www. w3 org/l999/xhtm1">
<xsl:output method="xml" indent="yes" doctype-system="about:legacy- compat"/>

</xsl:stylesheet>

Guide to approaching the problem

Our XSLT transformation (after all this housekeeping) has three template rules:

1. We have a template rule for the document node (<xsl1:template match="/">), in which we create
the basic HTML output: the <htm1> element, <head> and its contents, and <body >. Inside the <body>
element that we’re creating, we use <xsl:apply-templates> and select the acts (using an XPath
expression as the value of the @select attribute).

2. We have a separate template rule that matches acts, so it will be invoked as a result of the preceding
<xsl:apply-templates> instruction, and will fire once for each act. Inside that template rule we
create a new list item (<11 >) for the act being processed and inside the tags for that new list item we do
two things. First, we apply templates to the <head> for the act, which will eventually cause its title to be
output. Second, we create wrapper tags for the nested list that will contain the titles of the scenes.
Inside that new element, we use an <xsl:apply-templates> rule to apply templates to (that
is, to process) the scenes of that act.

http://dh.obdurodon.org/xslt-assignment-01.xhtml 3/4

http://www.w3schools.com/

4/3/2018 XSLT assignment #1

3. We have a separate template rule that matches scenes, and that just applies templates to the <AFad>
element in each scene, which ultimately causes the textual content of the <head> element to be output.
This rule will fire once for each scene in the play, and it will be called separately for the scenes of each
act, so that the scenes will be rendered properly under their acts.

We don’t need a template rule for the <head> elements themselves because the built-in (default) template
rule in XSLT for an element that doesn’t have an explicit, specified rule is just to apply templates to its children.
The only child of the <head> elements is a text () node, and the built-in rule for text () nodes is to output
them literally. In other words, if you apply templates to <head> and you don’t have a template rule that
matches that element, ultimately the transformation will just output the textual content of the head, that is, the
title that you want.

Important

* Those who like to read ahead or already have some programming experience with other languages may
have noticed that XSLT includes an <xs1: for-each> instruction that could be used to solve this
problem. We are prohibiting its use for now; your solution must use <xsl:template> and
<xsl:apply-templates> rulesinstead. There’s a Good Reason for this, which we’ll explain later,
when we talk about situations where you should use <xs1:for-each>.

* Before submitting your homework, you must run the transformation to make sure the results are what you
expect them to be. There’s a guide to running XSLT transformations inside <oXygen/> at
http://dh.obdurodon.org/oxygen-xslt-configuration.html. If you don’t get the results you expect and
can’t figure out what you're doing wrong, you’re welcome to post an inquiry to the discussion board. You
can’t just ask for the answer, though; you need to describe what you tried, what you expected, what you
got, and what you think the problem is. We often find, just as we’re preparing to post our own queries to
programming discussion boards, that having to write up a description of the problem helps us think it
through and solve it ourselves (the technical term for this phenomenon is rubber duck debugging).
We're encouraging you to discuss the homework on the discussion boards because that’s also helpful for
the person who responds; we’ve found that answering someone else’s inquiry and troubleshooting
someone else’s problem helps us clarify matters for ourselves.

http://dh.obdurodon.org/xslt-assignment-01.xhtml 4/4

http://dh.obdurodon.org/oxygen-xslt-configuration.html
https://rubberduckdebugging.com/

4/3/2018 XSLT assignment #2
112

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-03-12T15:40:38+0000

XSLT assignment #2

The input text

For this assignment we’ll be using an XML file originally prepared by a member of this class in spring
2012. We've modified it for use as an XSLT exercise, and the new version is available at
http://dh.obdurudon.org/skyrim.xml. You should right-click on this link, download the file, and open it in
<oXygen/>. We'll be using it for subsequent XSLT assignments, so keep a copy when you're done with this
one. You don’t need the Relax NG schema, but if you'd like to look at it, it’s available at
http://dh.obdurodon.org/skyrim.rnc.

Because this document (unlike our version of Hamlet) is not in a namespace, you should not add the
@xpath-default-namespace attribute.

Overview of the assignment

For this assignment you want to write an XSLT stylesheet that will transform the XML input document
into an HTML document that consists entirely of tables of characters and factions. You can see the desired
output at http://dh.obdurodon.org/skyrim-02.xhtml.

Analysis of the task

The information that you want to output is all found near the top of the input document, inside the
<cast> element. For the moment we're going to ignore everything else, including the <body>. You want
to generate one HTML table to contain information that you’ll extract from the <character> elements
and a second table to contain information that you’ll extract from the <faction> elements. Your XSLT,
then, should proceed along the following lines:

1. In a template rule for the document node (<xs1:template match="/">), create the HTML
superstructure. Between the start and end <body> tags that you’ll be creating you should insert the
main tags for two HTML tables, one for characters and one for factions. Between the start and end
<table> tags for each table, you should then insert <xs1:apply-template> elements that
select the nodes you want to process to build those tables. Be careful, though; there may be
<character> or <faction> elements elsewhere in the document, such as inside <paragraph>
elements, and for the tables you're producing you want only the ones that are inside the <cast>
element.

2. In XSLT, processing something normally happens in two parts. You normally have an <xs1:apply-
templates> element that tells the system what elements (or other nodes) you want to process,
and you then have an <xs1:template> element that tells the system exactly how you want to
process those elements, that is, what you want to do with them. If you find the image helpful, you

http://dh.obdurodon.org/xslt-assignment-02 .xhtml 1/3

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/skyrim.xml
http://dh.obdurodon.org/skyrim.rnc
http://dh.obdurodon.org/skyrim-02.xhtml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XSLT assignment #2

can think of this as a situation where the <xs1:apply-templates> elements throw sorhé nodes
out into space and say “would someone please process these?” and the various <xsl:template>
elements sit around watching nodes fly by, and when they match something, they grab it and process
it. In this case, then, your <xs1:apply-template> elements inside the template rule for the
document node will tell the system that you want to process <character> and <faction>
elements, at which point the template rule for the document node will have done its work by
announcing what needs to be done. That work actually gets done by other <xs1:template> rules,
the ones that you’ve written that match the <character> and <faction> elements.

3. Inthe <xs1:template> rules for <character> or <faction> elements you’ll need to output
something for each one. That is, for each <character> or <faction> element, you'll need to
output a line in your table.

4. The values you use to populate your table cells come from attributes. Remember that attributes are
on the attribute axis, which you can address by prefixing the name of the attribute with an “at” sign.
For example, open skyrim.xml in <oXygen/>, go into the XPath browser box in the upper left, and
search for //cast/character/@id, and you'll retrieve all of the @1 d attribute values associated
with <character> elements. You won't use this exact XPath in your assignment, but it can serve to
remind you how you address an attribute in XPath.

What goes where

You’'ll want to create three template rules, one for the document node (/), one for each type of element
you need to process.

In the template for the document node you create the HTML superstructure, as well as the wrappers for
the tables (that is, the <table> elements themselves). Then, inside the <tab1le> elements you'll create
the header rows, with the labels for the columns in each table, and after the header rows you’ll need to
use an <xsl:apply-templates> element and select the data you want to use to populate that table.
For the character table, the data will be the characters, and for the faction table, it will be the factions.

The actual rows in the tables for each of the characters and factions should be created in the template
rules that you’ll write for those elements. Note that the stuff you do just once per table (create the table
and the header row) should be in the template rule for the document node, but the stuff that has to
happen repeatedly, once for each row of data, should be in the template rule for those elements
(<character> and <faction>). That's the XSLT way to ensure that you create a new row for every
<character> or <faction> elementin the input.

How to develop an XSLT stylesheet

The problem with trying to code everything at once and then trying to run it is that if it doesn’t work, it
can sometimes be hard to find just where the error is. When we develop an XSLT stylesheet, we begin by
writing a template rule for the document node (/), and inside that we do basic housekeeping (e.g., HTML
superstructure) and include whatever <xsl:apply-templates> elements we need. Initially for the
templates that get called by those <xs1:apply-templates> elements we put in a simplified
placeholder, something that will produce output that may not be what we want eventually, but that will let
us confirm that our templates are being called. Once the basic framework is in place (we're calling the
right templates in the right places), we then start fine-tuning the individual template rules, replacing the
placeholder code with code that produces the results we actually want. The technical term for this type of
placeholder is stub.

In this case, in the template rules for characters and faction we might start by just outputting some plain
text. That won’t be valid in HTML, but it will tell you whether the templates are being called when you

http://dh.obdurodon.org/xslt-assignment-02 .xhtml 2/3

4/3/2018 XSLT assignment #2

want. Once that’s working, you can expand it by creating real HTML rows and cells and filling eac¢lfone
with fixed text of some sort. That’s now valid HTML, but it isn’t the real content. Once you’ve determined
that the cells are being created in the right place, you can then replace that fixed text with XSLT code that
retrieves the information you actually want in your table. [t may be tempting to write all of the code at
once, but typically it won’t all be correct the first time, and you'll save time in the long run by proceeding
one step at a time. That isn’t just for beginners; it's normal professional practice, and it’s what we do in
our own development, as well.

http://dh.obdurodon.org/xslt-assignment-02 xhtml 3/3

4/3/2018 XSLT assignment #3
115

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-03-12T15:41:00+0000

XSLT assignment #3

The input text

For this assignment we'll continue to use http://dh.obdurudon.org/skyrim.xml. You should right-click on
this link, download the file, and open it in <oXygen/>. You don’t need the Relax NG schema, but if you'd
like to look at it, it’s available at http://dh.obdurodon.org/skyrim.rnc.

Overview of the assignment

For this assignment we’re going to work with the <body> element, concentrating on processing the in-
line elements to style the text. You can use some of the basic HTML in-line elements, like for
emphasis or for strong emphasis, but you'll also want to use CSS to set some elements to
different colors or background colors or borders or fonts or font sizes or font styles (e.g., italic) or font
weights (e.g., bold) or text decoration (e.g., underlining) or text transformation (e.g., convert to all upper
case) ... well ... anything else. We describe below how to do that.

There are six types of in-line elements in the input XML document:

e <QuestEvent>
e <QuestlItem>
e <character>
e <epithet>

e <faction>

e <location>

Some are immediately inside a <paragraph> and some are inside other elements that are inside
paragraphs. You may not know at the outset which ones can be inside which other ones, or how deeply
they can nest. Happily, with XSLT, unlike with many other programming languages, you don’t need to care
about those questions!

How to process richly mixed content

Prose paragraphs with in-line elements that might contain other in-line elements are richly mixed

content, with varied and unpredictable combinations of elements and plain text. This is the problem that

XSLT was designed to solve. With a traditional procedural programming language, you’'d have to write

rules like “inside this paragraph, if there’s a <QuestEvent> do X, and, oh, by the way, check whether

there’sa <QuestItem>ora<location> inside the <QuestEvent>, etc.” Thatis, most programming

languages have to tell you what to look for at every step. The elegance of XSLT when dealing with this type

of data is that all you have to say inside paragraphs and other elements is “I'm not worried about what I'll

find here; just process (apply templates to) all my children, whatever they might be.”
http://dh.obdurodon.org/xslt-assignment-03.xhtml 173

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/skyrim.xml
http://dh.obdurodon.org/skyrim.rnc
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XSLT assignment #3

The way to deal with mixed content in XSLT is to have a template rule for every element and use ft%o
output whatever HTML markup you want for that element and then, inside that markup, to include a
general <xsl:apply-templates/>, notspecifying a @select attribute. For example, if you want
your <QuestEvent> to be tagged with the HTML tags, which means “strong emphasis” and
which is usually rendered in bold, you could have a template rule like:

<xsl:template match="QuestEvent">

<xsl:apply-templates/>

</xsl:template>

You don’t know or care whether <QuestEvent> has any child nodes or, if it does, what they are.
Whatever they are, this rule tells the system to try to process them, and as long as there’s a template rule
for them, they’ll get taken care of properly somewhere else in the stylesheet. If there are no child nodes,
the <xsl:apply-templates/> will apply vacuously and harmlessly. As long as every element tells you
to process its children, you’ll work your way down through the hierarchy of the paragraph without having
to know which elements can contain which other elements or text nodes.

Taking stock: when to use @select

In an earlier XSLT assignment, where you built HTML tables of characters and factions, you used
<xsl:apply-templates select=".."/>, specifying exactly what you wanted to process where.
That makes sense when your input (the <character>and <faction> elements inside the <cast>
element at the beginning of the document) and output (an HTML table) are very regular in structure. Use
the @select attribute when you know exactly what you’re looking for and where you want to put it.

In this assignment, on the other hand, you don’t know (and don’t need to know) the order and nesting
hierarchy of whatever salad of elements and plain text you might find inside a paragraph or its
subelements. You just want to process whatever comes up whenever it comes up. <xsl:apply-
templates/> without the @select attribute says “apply templates to whatever you find.” Omit the
@select attribute where you don’t want to have to think about and cater to every alternative individually.
(You can still treat them all differently because you’ll have different template rules to “catch” them, but
when you assert that they should be processed, you don’t have to know what they actually are.)

What should the output look like

HTML provides a limited number of elements for styling in-line text, which you can read about at
http://www.w3schools.com/html/html_formatting.asp. You can use any of these in your output, but note
that presentational elements, the kind that describe how text looks (e.g., <1> for “italic”), are generally
regarded as less useful than descriptive tags, which describe what text means (e.g., for “emphasis”).
Both of the preceding are normally rendered in italics in the browser, but the semantic tag is more
consistent with the spirit of XML than the presentational one.

The web would be a dull world if the only styling available were the handful of presentational tags
available in vanilla HTML. In addition to those options, there are also ways to assign arbitrary style to a
snippet of in-line text, changing fonts or colors or other features in mid-stream. To do that:

1. Before you read any further in this page, read our Using and @class to style your HTML
page.

http://dh.obdurodon.org/xslt-assignment-03.xhtml 2/3

http://www.w3schools.com/html/html_formatting.asp
http://dh.obdurodon.org/class-and-span.html

4/3/2018

XSLT assignment #3

2. To use the strategies described at that page, create an XSLT template rule that transforms tHé

element you want to style to an HTML element with a @class attribute. For example, you
might transform <faction ref="MythicDawn">assassins</faction> inthe input XML
to assassins in the output HTML. You can then
specify CSS styling by reference to the @class attribute, as described in the page we link to above.

o Note that you can make your transformations very specific. For example, instead of setting all
<faction> elements to the same HTML @class, you can create separate template rules to
match on factions according to their attribute values. For example, <xs1:template
match="faction[@ref="MythicDawn']"> is a normal XPath expression to match
<faction> elements only if they have a @ref attribute with the value “MythicDawn”.

o Ifyou really want to exercise your XPath skills, note that in the header some factions are
described (with an @alignment attribute) as “evil”, “good”, or “neutral”. You can write a
matching rule that will dereference the @ref attribute on, say, <faction
ref="MythicDawn">assassins</faction>, look up whether this is an evil, good, or
neutral faction, and set the @class value accordingly. You could make all good factions one
color and all evil factions a different color, letting XPath look up the moral alignment of a
faction for you.

. Setting the @cLass attributes in the output HTML makes it possible to style the various

elements differently according to the value of those attributes, but you need to create a CSS
stylesheet to do that. Create the stylesheet (just as you‘ve created CSS in the past), and specify how
you want to style your elements. Link the CSS stylesheet to the HTML you are outputting by
creating the appropriate <11nk> element in your output HTML (you can remind yourself how to do
that at the bottom of our Introduction to CSS).

When the smoke clears

What you should produce, then, is:

An XSLT stylesheet that transforms the <body> element and its contents into HTML.

The resulting HTML should style the six types of in-line elements listed above. At least some of
those styles should be set using elements with the @class attribute.

You need to create a CSS file, linked to your output HTML, that specifies how to style the output
document. You can look up the most useful of the available CSS properties at
http://www.w3schools.com/css/. We’d suggesting following the links on the left under “CSS
styling” for styling backgrounds, text, and fonts, as well as the link for borders under “CSS box
model”.

Please upload your XSLT, HTML, and CSS files to CourseWeb.

http://dh.obdurodon.org/xslt-assignment-03.xhtml 3/3

http://dh.obdurodon.org/css-intro.xhtml
http://www.w3schools.com/css/

4/3/2018 XSLT assignment #4
118

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2016-10-20T21:24:33+0000

XSLT assignment #4

The input text

For this assignment you will be working with Shakespearean sonnets, which you can download from
http://dh.obdurodon.org/shakespeare-sonnets.xml. You should right-click on this link, download the file,
and open it in <oXygen/>.

Using modal XSLT

What happens if you need to process the same nodes in your document in two different ways? For
example, what happens if you need to output them as list items in a table of contents, but also as headers
or text in the main body of your document, below the table of contents? Wouldn'’t it be handy to be able to
have two completely different template rules that match exactly the same elements, one rule to output the
data as list items in the table of contents and the other to output the same data as headers? You can write
two template rules that will match the same nodes (have the same value for their @match attribute), but
how do you make sure that the correct one is handling the data in the correct place?

For this assignment we would like you to get some experience working with modal XSLT. As is explained
at http://dh.obdurodon.org/modal-xslt.html, modal XSLT allows you to output the same parts of the input
XML document in multiple locations and treat them differently each time. That is, it lets you have two
different template rules for processing the same elements or other nodes in different ways, and you use
the @mode attribute to control how the elements are processed at a particular place in the
transformation.

Overview of the assignment

For this assignment you want to produce an HTML version of the sonnets with a table of contents at the
top. The table of contents should have one entry for each sonnet, which gives the number of the sonnet
and the first line. Below the full table of contents (one line for each sonnet) you should render the
complete text of all of the sonnets. You can see our output at http://dh.obdurodon.org/shakespeare-
sonnets.xhtml.

How to begin

Begin by forgetting about the table of contents, and concentrate on just outputting the full text of the
sonnets. This is just like the XML-to-HTML transformations you have already written, and you’ll use
regular template rules (without a @mode attribute) to perform the transformation. In our HTML output
(scroll down past the table of contents, to where the full text of the sonnets is rendered), the roman
numeral before each sonnet is an HTML <h2> element and the body of each sonnet is an HTML <p>

http://dh.obdurodon.org/xslt-assignment-04 xhtml 1/3

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/shakespeare-sonnets.xml
http://dh.obdurodon.org/modal-xslt.html
http://dh.obdurodon.org/shakespeare-sonnets.xhtml
http://dh.obdurodon.org/shakespeare-sonnets.xhtml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XSLT assignment #4

element. To make each line of the poems start on a new line, we add an HTML empty
 (“[1if2]
break”) element at the end of each line within the stanza. If you don’t include the
 elements, the
lines will all wrap together in the browser. Here’s the HTML output for one of our sonnets:

<h2>VI</h2>

<p>Then let not winter's ragged hand deface,

In thee thy summer, ere thou be distill'd:

With beauty's treasure ere it be self-kill'd.

Make sweet some vial,; treasure thou some place

That use 1is not forbidden usury,

Which happies those that pay the willing loan;

That's for thy self to breed another thee,

Or ten times happier, be it ten for one;

Ten times thy self were happier than thou art,

If ten of thine ten times refigur'd thee:

Then what could death do if thou shouldst depart,

Leaving thee living in posterity?

Be not self-will'd, for thou art much too fair

To be death's conquest and make worms thine heir.

The fine print: Don’'t worry if your HTML output isn’t wrapped the same way ours is, if it puts the empty line break elements
at the beginnings of lines instead of at the ends, or if it serializes (spells out) those empty line break elements as
</br>
instead of as
. Those differences are not informational in an XML context. You can open your HTML output in <oXygen/>
and pretty-print it if you’d like, which may make it easier to read, but as long as what you’re producing is valid HTML and
renders the text appropriately, you don’t have to worry about non-informational differences between your markup and ours.

More fine print: You need a line break only between lines, which is to say that you don’t need a
 element at the end of
the last line of the sonnet because that’s the end of the containing <p>, and not between lines. In our solution we used an
<xsl:1if>element to check the position of the line and output the
 only for non-final lines. If you're feeling ambitious,
you can look up <xs1:1f> at http://www.w3schools.com/xml/xsl_if.asp or in Michael Kay and perform this check yourself. If
not, you can just output the
 element after all lines of the sonnet, including the last. That's not really considered good
HTML style, and you don’t want to do it in your own projects, but it won’t interfere with the legibility in the browser and we’ll
let it pass for homework purposes.

Once your sonnets are all being formatted correctly in HTML, you can add the functionality to create the
table of contents at the top.

Adding the table of contents

The template rule for the document node in our solution, revised to output a table of contents before the
text of the sonnets, looks like the following:

<xsl:template match="/">
<html>

<head>
<title>Shakespearean sonnets</title>

</head>

<body>
<hl>Shakespearean sonnets</hl>
<h2>Contents</h2>

<xsl:apply-templates select="//sonnet" mode="toc"/>

<hr/>

http://dh.obdurodon.org/xslt-assignment-04.xhtml 2/3

http://www.w3schools.com/xml/xsl_if.asp

4/3/2018 XSLT assignment #4

<xsl:apply-templates/> 120
i </body>
i </html> '
i </xsl:template> ;

The highlighted code is what we added to include a table of contents, and the important line is
<xsl:apply-templates select="//sonnet" mode="toc"/>.This is going to apply templates
to each sonnet with the @mode attribute value set to “toc”. The value of the @mode attribute is up to you
(we used “toc” for “table of contents”), but whatever you call it, setting the @mode to any value means that
only template rules that also specify a @mode with that same value will fire in response to this
<xsl:apply-templates> element. Now we have to go write those template rules!

What this means is that when you process the <sonnet> elements to output the full poems, you use
<xsl:apply-templates>and <xsl:template> elements without any @mode attribute. To create
the table of contents, though, you can have <xs1:apply-templates>and <xsl:template>
elements that select or match the same elements, but that specify a mode and apply completely different
rules. A template rule for <sonnet> elements in table-of-contents mode will start with
<xsl:template match="sonnet" mode="toc">, and you need to tell it to create an <11i>
element that contains a roman numeral and a first line, both fetched from the sonnet in the input XML file.
The rule for those same elements not in any mode will start with <xs1:template
match="sonnet"> (without the @mode attribute). That rule will create the <h2> header to hold the
roman numeral and then output the full text of the poem in a <p>, with
 elements between the
lines. In this way, you can have two sets of rules for sonnets, one for the table of contents and one for the
body, and use modes to ensure that each is used only in the correct place.

Remember: both the <xsl:apply-templates> which tells the system to process certain nodes, and the
<xsl:template>thatresponds to that call and does the processing must agree on their mode values. For
the main output of the full text of every poem, neither the <xs1:apply-templates> nor the
<xsl:template> elements specifies a mode. To output the table of contents, both specify the same
mode.

http://dh.obdurodon.org/xslt-assignment-04.xhtml 3/3

4/3/2018 XSLT assignment #5
121

<o00>—-<dh> Digital humanities

Maintained by: David . Birnbaum (djbpitt@gmail.com)
Last modified: 2017-03-01T03:29:03+0000

XSLT assignment #5

The input text

For this assignment you will be working with Shakespearean sonnets, which you can download from
http://dh.obdurodon.org/shakespeare-sonnets.xml. You should right-click on this link, download the file,
and open it in <oXygen/>. You will be building on our XSLT assignment #4, and you can take your stylesheet
from that assignment and modify it for this one.

Overview of the assignment

For your last assignment you used the XSLT @mode attribute to create a table of contents for the
Shakespearean sonnets, using the first line of each sonnet as a surrogate for the title (since they don’t have
real titles). Our output is at http://dh.obdurodon.org/shakespeare-sonnets.xhtml.

What's a table of contents good for anyway

In a digital edition, we can just do a full-text search and scroll in the browser, so we don’t really need a table
of contents at all. We can search for a roman numeral, we can search for the text of the first line of a sonnet,
or we can search for a memorable phrase. But suppose we want to produce a paper edition, where the only
organized access our users will get is the organization we decide to give them. What would be a useful table
of contents or index?

A table of contents in the same order as the full text (numerical order), which is what we produced in the last
assignment, duplicates the ordering information in the plain text. How useful is that? If we want to find a
sonnet with a low number, we already know without a table of contents that we should look near the
beginning. On the other hand, it’s very common in published poetry collections to include an index of first
lines, sorted in alphabetical order, so that a user who remembers just the first line of a poem can find it easily.

For this assignment we're going to enhance our output from the last assignment in the following ways:

* We're going to create links between the items in the table of contents and the sonnets, so that you can
click on a line and be taken immediately to the corresponding sonnet.

* We're going to alphabetize our list of first lines, so that the table of contents will be sorted
alphabetically, instead of in numerical order.

* Aslong as we were sorting the lines by order of appearance in the collection, that is, by numerical order
of sonnet, it made sense to put the sonnet number (the roman numeral) first. For example, the sixth
entry in our original list read “VI. Then let not winter’s ragged hand deface,”. If we’re now going to sort
by the first line of text, though, having those roman numerals at the far left edge of the entry will be
disorienting, since they’ll obscure the fact that we’re using alphabetical order. We do want to retain the
roman numerals (after all, the sonnet numbers are meaningful for Shakespeare scholars), but we're

http://dh.obdurodon.org/xslt-assignment-05 .xhtml 1/4

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/shakespeare-sonnets.xml
http://dh.obdurodon.org/xslt-assignment-04.xhtml
http://dh.obdurodon.org/shakespeare-sonnets.xhtml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XSLT assignment #5

going to move them to the end of the line, so that when the user reads down the left edge of thé%able of
contents, scanning for a particular first line, the alphabetic order will be immediately accessible.

Our HTML output is at http://dh.obdurodon.org/shakespeare-sonnets-sorted.xhtml.

The tools we need

To create links between the first lines in the table of contents and the sonnets in the full text section of the
page below we’re going to use attribute value templates (AVT). If you haven’t done so already, you should read
about AVTs at http://dh.obdurodon.org/avt.xhtml.

To sort the table of contents we're going to use <xsl:sort>.

When we sort the first lines, they won’t sort correctly for a quirky reason. We're going to fix that using the
XPath translate () function, which we discuss below.

How HTML linking works

The <11 > items in the table of contents should include <a> (“anchor”) elements, which is how HTML
identifies a clickable link. An anchor that is a clickable link has an @href attribute, which points to the target
to which you want to move when you click on the link. For example, the table of contents might contain the
following list item for Sonnet VI:

———

HTML <a> elements that have @href attributes normally appear blue and underlined in the browser, to
advertise that they are links. The target of a link can be any element that has an @1 d attribute that identifies
it uniquely. If you click on this line in the browser, the window will scroll to the element elsewhere in the
document that has an @1d attribute with the value “sonnetVI”. In our case, we've assigned that @1id attribute
value to the <h2> for that sonnet in the main body:

Adding links to your output

You should first read our page on Attribute value templates (AVT), which describes a strategy you can use to
create a unique @1d attribute for each sonnet. For this task we gave our sonnets @1d values that were a
concatenation of the string “sonnet” and the roman numeral of the sonnet, e.g., “sonnetVI” for Sonnet #6. We
attached those @1d attributes to the <h2> elements that we used as titles for each sonnet in the body of our
page, e.g, <h2 id="sonnetVI">. Meanwhile, in the table of contents at the top we created <a> elements
with @href attributes that point to these @1id values. The value of the @href attribute must begin with a
leading “#” character, but that “#” must not be part of the value of the @1 d attribute to which it points. For
example,

means if the user clicks on this line, the browser will scroll to the line that reads <h2 id="sonnetVI"> in
the main body of the page. Remember: the value of the @hre T attribute begins with “#”, but the value of the

http://dh.obdurodon.org/xslt-assignment-05.xhtml 2/4

http://dh.obdurodon.org/shakespeare-sonnets-sorted.xhtml
http://dh.obdurodon.org/avt.xhtml
http://dh.obdurodon.org/avt.xhtml

4/3/2018 XSLT assignment #5

corresponding @1d attribute on the <h2> element you want to scroll to doesn't. 123

Armed with that information, you can take your answer to the main assignment and, using AVTs, modify it to
create the <a> elements with the @href attributes and the @1id attributes for the targets.

Sorting

An index of first lines in a collection of poems is usually alphabetized, because that’s how humans look things
up in that kind of list. To learn how to sort your table of contents before you output it, start by looking up
<xsl:sort> athttps://www.w3schools.com/xml/xsl_sort.asp or in Michael Kay. So far, if we’ve wanted to
output, say, our table of contents in the order in which they occur in the document, we’ve used a self-closing
empty element to select them with something like <xs1:apply-templates select="//sonnet"/>.
We’ve also said, though, that the self-closing empty element tag is informationally identical to writing the
start and end tags separately with nothing between them, thatis, <xs1:apply-templates
select="//sonnet></xsl:apply-templates>. To cause the elements being processed to be sorted
first, you need to use this alternative notation, with separate start and end tags, because you need to put the
<xsl:sort> element between the start and end tags. If you use the first notation, the one with a single self-
closing tag, there’s no “between” in which to put the <xs1:sort> element. In other words, you want
something like:

<xsl:apply-templates select="//sonnet">
<xsl:sort/>
</xsl:apply-templates/>

As written, the preceding will sort the <sonnet> elements alphabetically by their text value. As you'll see at
the sites mentioned above, though, it’s also possible to use the @select attribute on <xsl:sort> tosorta
set of items by properties other than alphabetic order of their textual content.

After the sort

At this point we’d make other adjustments in the output. The original table of contents begins with a roman
numeral, but if you're going to sort the table of contents, you want the text of the first line of the poem at the
left side of the line, not preceded by the roman numeral, so that you can see the alphabetic order easily.
Putting the roman numeral first would make it harder to discern the alphabetization, since the user wouldn’t
be able to see it by just glancing down the left margin. For that reason, you should now adjust the output to
put the roman numeral after the text of the line, in parentheses.

Using translate() to fix the sort order

If you sort the first lines alphabetically according to their textual value, there will be one error. The first line
of Sonnet #121, “'Tis better to be vile than vile esteem'd,”, will show up first because in the internal
representation of characters in the computer, the single straight apostrophe is “alphabetically” earlier than all
of the letters. We can fix this by using translate () to strip the apostrophe for sorting purposes, but not for
rendering. That is, we can sort as if there were no apostrophe, while still printing the apostrophe when we
render the line.

We can'’t easily translate away an apostropohe, though, because quotation marks have special meaning in
XPath. For the purpose of this assignment, you can ignore this one missorted line. If you're feeling ambitious,
though, read Michael Kay’s answer at http://p2p.wrox.com/xslt/50152-how-do-you-translate-
apostrophe.html and see whether you can apply it to fixing this problem.

http://dh.obdurodon.org/xslt-assignment-05.xhtml 3/4

https://www.w3schools.com/xml/xsl_sort.asp
http://p2p.wrox.com/xslt/50152-how-do-you-translate-apostrophe.html

4/3/2018 XSLT assignment #5

Finishing touches

124

Some lists of first lines of poetry put quotation marks around the lines. We haven’t done that in our solution,
but if you'd like to add it, you should use the HTML <q> (“quoted text”) element, instead of outputting the
raw quotation marks as plain text.

Oh, and did we mention CSS? Can you attach a CSS stylesheet to your output to make it look more interesting
than what you get by default in a web browser?

http://dh.obdurodon.org/xslt-assignment-05 .xhtml 4/4

4/3/2018 XSLT assignment #6
125

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-03-16T15:31:16+0000

XSLT assignment #6

The texts

Beginning in spring 2014 (2144), XML texts prepared by students in this course for their projects have
been made available on GitHub (unless prohibited by copyright). You can find them by loading our Course
projects page and clicking on the bracketed links labeled “GitHub” after the project titles. Because the
XML texts for current (and some older) projects are under development, they may be inconsistently or
incompletely marked up. As long as they are well formed, however, they can be explored with XML tools,
including XSLT.

The assignment

Select an XML file from one of the projects and spend a few minutes looking at it to familiarize yourself
with its overall structure. (Notice whether it’s in a namespace!) Explore the project GitHub repo and site
to learn more about it. You may use your own XML files or someone else’s. Download an XML file from
whichever project you choose and open it in <oXygen/>.

Digression: Downloading files from GitHub

The easiest way to download a file from GitHub is to clone the project onto your own machine, which will
copy all files, and then open the file you need. If you want to download just one file (which is all you need
for this assignment), you can'’t just right-click and download because you’ll download a version with
extraneous GitHub specific markup mixed into the file, which will render the file unusable for your
purposes. What you can do instead is 1) connect to the repo in a browser; 2) click on the file you want,
which will display its contents; 3) click on the button labeled “Raw” at the top of the code window, which
will display its contents without any extraneous GitHub-specific material; and 4) either right-click and do
a “Save as” or select all the text in the window, copy it to the clipboard, and paste it into a new XML
document in <oXygen/>.

What to do with the file once you've downloaded it

Transform the XML into some form of HTML using XSLT, whether that’s a reading view or some sorts of
lists or tables or other reports. You should decide yourself on the type of output you would find
interesting or useful, but so that you'll gain practice with some of the techniques we’ve introduced
recently, your transformation must require meaningful use of at least two of the following:

e Conditional: an <xs1:1f>and/or <xsl:choose> statement(s) (see XSLT, part 2: conditionals
and push and pull)
* An<xsl:for-each> statement (see XSLT, part 2: conditionals and push and pull)

http://dh.obdurodon.org/xslt-assignment-06.xhtml 172

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/course-projects.xhtml
http://dh.obdurodon.org/xslt-basics-2.xhtml
http://dh.obdurodon.org/xslt-basics-2.xhtml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 XSLT assignment #6

e Attribute value templates (see Attribute value templates (AVT)) 126

* Modal XSLT (see Modal XSLT)
¢ Linking (e.g., as in XSLT assignment #5)

Please upload your XSLT and the XML to CourseWeb. You do not have to upload the HTML output of your
transformation (we’re going to run the transformation and generate the HTML ourselves anyway). If your
HTML is going to be styled with CSS, though, be sure that your XSLT generates the necessary <link>
element inside HTML document, and upload the CSS file along with the XSLT.

http://dh.obdurodon.org/xslt-assignment-06.xhtml 2/2

http://dh.obdurodon.org/avt.xhtml
http://dh.obdurodon.org/modal-xslt.html
http://dh.obdurodon.org/xslt-assignment-05.xhtml

4/3/2018 ITest #5: XSLT
127

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2018-03-23T21:40:13+0000

Test #5: XSLT

The task

For this test, we are revisiting the play The bicyclers and three other farces from the Regex test, this time to
use XSLT to transform an XML version of the entire text into a reading view in HTML. The input XML is
available at http://dh.obdurodon.org./xslt-test_input.xml. One possible HTML output file is available at
http://dh.obdurodon.org/xslt-test_output.xhtml, but yours does not have to look exactly like ours.

Before you start

Before writing any XSLT, you should explore the XML file. Part of that exploration involves reading
through it quickly, but you can also use the XPath browser interface in <oXygen/> to learn about the
markup. What elements are used in the document? How are they structured, that is, which elements can
occur where? To get you started, you can get the names of all of the distinct element types with the XPath
expressiondistinct-values (//*/name ()). This finds all elements anywhere in the document
(//*); uses the name () function to get their names, instead of the elements themselves; and then uses
thedistinct-values () function to remove the duplicates and make the list easier to read. Before you
write any XSLT, be confident that you know how each of these element types is used in the document.
Hint: the <stage> element appears in two different contexts (you can find them using XPath), and you
may want to process it differently according to where it appears.

HTML requirements

Your HTML must look like the script for a play. That gives you a lot of flexibility, since the typography
of play scripts is not rigid, but it should be something that a reader would recognize as a script, and the
expected parts of the script (such as scenes, speakers, spoken text, stage directions) should be
recognizable.

Your HTML must be valid. This means that you should save the results of the transformation by
specifying a filename in the “Output” dropdown in <oXygen/>, and, after running the transformation, you
should open the output HTML in <oXygen/> and validate it. You are not required to apply CSS to the file,
but if you do (it’s an optional bonus task, about which see below), the CSS needs to be valid, it needs to be
linked to the HTML, and the link needs to be created during the transformation.

Required output features

Your output must include the following:

* Titles for the play and for the four constituent scenes.

http://dh.obdurodon.org/xslt-test_instructions.xhtml 172

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/xslt-test_input.xml
http://dh.obdurodon.org/xslt-test_output.xhtml
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 ITest #5: XSLT

e (Cast of characters for each scene 128

* Speeches should be recognizable as speeches, and the speakers should be represented in a way that
makes sense in a script.
¢ Stage directions should be recognizable as stage directions.

You should create this output by using XSLT in an algorithmic fashion, as described in our
http://dh.obdurodon.org/algorithms.xhtml.

Successful completion of everything above this line earns an “A” grade.

Bonus tasks

The following features earn extra credit:

¢ Create a table of contents at the top of the file with links to the four scenes.

¢ Use attribute value templates where they improve your XSLT.

¢ Use appropriate XPath functions where they improve your XSLT.

e Use conditional statements (<xs1:1f> or <xsl:choose>) to streamline your XSLT.
¢ Use CSS to improve the appearance of the output.

e Ifyou use CSS, use @class attributes in the HTML to assist with the CSS styling.

¢ Add comments to your XSLT to document your code.

e Use <xsl:text> where appropriate to manage plain text.

What to submit

Upload your XSLT file and, if you created CSS, your CSS stylesheet. Do not upload either the input XML (we
already have it) or the output HTML (we’ll run your XSLT transformation to create it).

http://dh.obdurodon.org/xslt-test_instructions.xhtml 2/2

http://dh.obdurodon.org/algorithms.xhtml

4/3/2018 Schematron assignment #1
129

<o00>—-+<dh> Digital humanities

Maintained by: David |J. Birnbaum (djbpitt@gmail.com)
Last modified: 2013-03-04T17:46:12+0000

Schematron assignment #1

In a three-way election for Best Stooge Ever, each candidate (Curly, Larry, Moe) wins between 0% and
100% of the votes. Assume that all votes are cast for one of the three candidates (no abstentions, write-
ins, invalid ballots, etc.), which means that when you add the percentages for the three candidates, the
result must be exactly 100%. Assume also that we’re recording percentage of the vote, not raw votes, and
that the percentages are all integer values. (In Real Life we’d probably record the raw count and calculate
the percentages, but in real life we wouldn’t be voting for Best Stooge Ever in the first place!) Here's a
Relax NG schema for the results of the election:

start = results

results = element results { stooge+ }

stooge = element stooge { name, xsd:int }

name = attribute name { "Curly" | "Larry" | "Moe" }

<results>
<stooge name="Curly">50</stooge>
<stooge name="Larry">35</stooge>
<stooge name="Moe">15</stooge>
</results>

We could have written a better Relax NG schema, but we didn’t, and although our sloppy schema works
with the results above, it also allows erroneous results like the following:

<results>
<stooge name="Curly">55</stooge>
<stooge name="Larry">38</stooge>
. <stooge name="Moe">11</stooge>
i </results> :

The problem here is that the three “percentage” values total 104%, and no matter how good our coding, it
is not possible to prevent this type of error by using Relax NG alone. Your assignment is to write a
Schematron schema that verifies that the three percentages always total exactly 100%. Test your results
by creating the Relax NG schema, your Schematron schema, and a sample XML document that you can
validate against both schemas in <oXygen/>. Enter correct and incorrect values and verify that the
Schematron schema is working correctly. For homework, upload only your Schematron schema.

http://dh.obdurodon.org/schematron-assignment-01.html 172

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 Schematron assignment #1

You can stop here and consider the assignment complete, but for more Schematron practice, you'te
welcome to add additional rules to check for additional types of error. The following types of errors could
have been controlled by writing a better Relax NG schema, but for the purpose of learning Schematron,
let’s do it in Schematron:

1. There should be exactly three votes, with exactly one for each Stooge. No duplicate Stooges and no
missing Stooges.

2. Each individual Stooge’s vote should range from 0 to 100. No negative integers and no integers
greater than 100. (The Relax NG schema is ensuring that all values are integers, so you don’t have to
worry about that.)

http://dh.obdurodon.org/schematron-assignment-01.html

2/2

4/3/2018 Schematron assignment #2
131

<o00>—-+<dh> Digital humanities

Maintained by: David . Birnbaum (djbpitt@gmail.com)
Last modified: 2012-10-27T14:34:01+0000

Schematron assignment #2

Preamble

This assignment is situated in the context of Real Life linguistic documentation project in which we were
asked to provide some XML assistance. Your assignment involves a bit of Schematron in the middle, but
we describe below both the linguistic project itself and the eventual XML conversion that the Schematron
was ultimately used to facilitate.

The problem

Here’s a quote from http://dh.obdurodon.org/schematron-class-01.html (simplified slightly):

--

Linguistic corpora often record transcriptions in multiple tiers, such as a transcription of the
original utterance, a word-by-word gloss with grammatical information, and a more fluid,
natural-language translation. The set of notational conventions most commonly used for this
purpose by corpus linguists have been codified in the Leipzig Glossing Rules
(http://www.eva.mpg.de/lingua/resources/glossing-rules.php). Here is a Russian example
based on that document:

Orth Msl | € Mapko | nmoexa-s-u | aBTo6yc-oM | B | [lepenenkuHo
Translit | My |s Marko | poexa-1-i | avtobus-om | v | Peredelkino.
ILG we | with | Marko | go-PST-PL | bus-by to | Peredelkino.
Free 'Marko and I went to Perdelkino by bus.'

Other tiers might include International Phonetic Alphabet (IPA) and interlinear glossing or free
translation into other languages.

Each of the computationally tractable tiers should have the same number of words, and each
word should have the same number of hyphens.

__

From field notes to markup

Field linguists often type up this information in plain text, so that their starting point is something like:

http://dh.obdurodon.org/schematron-assignment-02.html 173

mailto:djbpitt@gmail.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dh.obdurodon.org/schematron-class-01.html
http://www.eva.mpg.de/lingua/resources/glossing-rules.php
http://www.obdurodon.org/
http://dh.obdurodon.org/

4/3/2018 Schematron assignment #2

i Orth: MbI c Mapko noexa-s1-u aBTo6yc-oM B [lepesieIKUHO
| Translit: My s Marko poexa-l-i avtobus-om v Peredelkino.
ILG: we with Marko go-PST-P bus-by to Peredelkino.
Free: Marko and I went to Perdelkino by bus.

i <sentence> :

i <orth>Mel ¢ Mapko noexa-n-u asTobyc-om B [lepesenkunHo</orth> 5

: <translit>My s Marko poexa-1-i avtobus-om v Peredelkino.</translit>

i <ilg>we with Marko go-PST-P bus-by to Peredelkino.</ilg> !

; <free>Marko and I went to Perdelkino by bus.</free>
</sentence>

You don’t have to do the following for this assignment, but now that you've learned a bit about regular
expressions, <xsl:analyze-string>, and the XPath tokenize () function, you would be able to
write XSLT to convert this XML to a different XML structure, one where the pieces are aligned properly,
that is, so that every word and morpheme on the Orth, Translit, and ILG (interlinear gloss) tier is
associated with the corresponding word or morpheme on the other tiers (except the Free tier, which isn’t
expected to match up; it’s a free translation, after all). But that works only if the person who entered the
data originally got the spaces and hyphens right! If the number of spaces and hyphens doesn’t match up in
the Orth, Translit, Gram, and ILG tiers, you can’t automate the alignment.

The task: using Schematron to get your data ready for XML-to-XML
conversion

When we had to perform this type of plain-text-to-XML converstion for a real linguistic documentation
project, the linguists’ initial, raw field notes had lots of error: spaces instead of hyphens and vice versa, as
well as other punctuation (periods, hash marks, etc.) in place of both spaces and hyphens. This is typical
field data; it’s very hard for a human to pay attention to counting spaces and punctuation marks, which is
why we use markup languages in projects of this sort in the first place. Before we even tried to transform
the data with XSLT to something that formalized the word-by-word and morpheme-by-morpheme
alignment, we used Schematron to verify that the number of spaces and hyphens matched where it
needed to. That doesn’t mean that we can’t still have a mistake, of course, but it greatly reduces the
opportunity that we won’t notice an error; since only if we were to make the same error (or the same type
of error) in every associated tier would we fool the counter.

Your assignment, then, is to write a Schematron schema that will take input like:

<sentence>
i <orth>Mel ¢ Mapko noexa-n-u asTtobyc-om B [llepepsenkuHo</orth>
: <translit>My s Marko poexa-1-i avtobus-om v Peredelkino.</translit>
i <ilg>we with Marko go-PST-P bus-by to Peredelkino.</ilg> :
i <free>Marko and I went to Perdelkino by bus.</free> |
</sentence>

and verify that the first three lines (Orth, Translit, and ILG) all have the same number of spaces and the
same number of hyphens. You do not have to convert this XML to word-aligned or morpheme-aligned XML;

http://dh.obdurodon.org/schematron-assignment-02.html 2/3

4/3/2018 Schematron assignment #2

all you have to do is write the Schematron that will verify whether the spaces and hyphens match. T
verification is a prerequisite for the transformation, which would be the next step in Real Life, but for a
Schematron assignment all you have to do is ... well ... write the Schematron.

To test your Schematron rules, create your own small sample XML document, with a handful of sentences
formatted like the example above, with each tier in its own element but no internal markup separating
words or morphemes. You can make up your own examples in a language of your choice or copy examples
from http://www.eva.mpg.de/lingua/resources/glossing-rules.php. If you make up your own examples,
don’t worry about the precision of your linguistic annotations; this is an exercise in Schematron, and not
in field linguistics. It doesn’t matter what tiers you use, as long as you have at least two that have spaces
and hyphens in them that are supposed to correspond. You should also make copies of some of your
examples, muck up the spaces and hyphenation, and use that bad data to test whether your Schematron
schema can catch the errors.

If that's too easy

The following isn’t required, but if you feel like exercising your XSLT and XPath skills, you’re welcome to
transform the input XML, which you’ve verified with Schematron, to a different XML structure, one that
formalizes the word-by-word or morpheme-by-morpheme associations. There’s no single right output
XML structure (schema) for this purpose, so should you choose to try it, you should first decide what the
XML output of the transformation should look like, and then write the XSLT to produce it.

http://dh.obdurodon.org/schematron-assignment-02.html 3/3

http://www.eva.mpg.de/lingua/resources/glossing-rules.php

134

newtFire {dhlds}

Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last
modified: Sunday, 06-Aug-2017 18:16:13 EDT. Powered by firebellies.

Regex Exercise: Convert the text of
a voyage narrative into XML

Consult the following resources as you work with Regular Expressions:

e Our newtFire tutorial on Autotagging with Regular Expressions (Regex),
e Regular-Expressions.info Tutorial: a mine of helpful detail on regular expression matching,

Your challenge is to up-convert to XML the complete plain text file of A VOYAGE round the
WORLD by Georg Forster, using the Find and Replace window . This file is quite large, so
autotagging using Regular Expressions (regex) is really the only option we have to make this text
into an XML document. Begin by downlading the text file and opening it in <oXygen/>. Use the
Find and Replace window in <oXygen/> to autotag the document, and consult our Guide to
Autotagging with Regular Expressions and the Regular Expressions Quick Start tutorial as you work.

Record each step of your process carefully, in a separate plain-text file. This plain text file is what
you will submit for your homework. Record step-by-step your global Find-and-Replace operations
with Regular Expressions in oXygen. Your goal is to produce an XML document like our model
XML file but even if you have have trouble, what is most important is that you document the steps
you took.

Your XML markup should accomplish the following:

1. Indicate the structure of the file by marking book divisions, chapter divisions, and paragraphs.
(You do not necessarily want to do this in that order! You might want to start "from the inside
out", with the paragraphs first, and then work your way up.) Think about a strategy that makes
sense to you to help you match the distinctive patterns that designate the structure of this
document.

2. Tag the dates, at least the dates that are sitting in square brackets. Ideally, you should remove
any pseudo-markup around them.

Your complete text should look like our model, only you could go one better by removing the
pseudo-markup (the brackets) around the dates. Can you locate and tag more dates than those in the
square brackets?

Upload two files on Courseweb for this exercise:

1. a plain-text file in which you recorded your steps, and
2. your end result: the XML file you have created.

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://newtfire.org/dh/explainRegex.html
http://www.regular-expressions.info/tutorial.html
http://dh.newtfire.org/ForsterGeorgComplete-regex2.txt
http://dh.newtfire.org/explainRegex.html
http://www.regular-expressions.info/quickstart.html
http://dh.newtfire.org/ForsterGeorgComplete-regex2-xml.xml
http://dh.newtfire.org/ForsterGeorgComplete-regex2-xml.xml

135

newtFire {dhlds}

Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last
modified: Tuesday, 03-Apr-2018 23:59:21 EDT. Powered by firebellies.

Regex Exercise (Short Test):
Autotag the Radio Script of The War
of the Worlds

e Our newtFire tutorial on Autotagging with Regular Expressions (Regex)
e Regular-Expressions.info Tutorial: a mine of helpful detail on regular expression matching,

The test

¢ For this test you need to download the War-of-the-World-1938.txt file from the Newtfire site.

o After you have the file downloaded and opened the file in 0Xygen, open the Find/Replace
window.

¢ Open new text file to record your steps. Record each step of your process on the following
tasks carefully, since this is the file we will be evaluating. These will include global Find-and-
Replace operations or Regular Expressions in 0Xygen (using Ctrl-F on Windows or command-
F on Mac). Your goal is to produce a well-formed XML document, but even if you have have
trouble, what's most important is that you document the steps you took.

e We have already verified for you that there are no reserved characters.

¢ Also there are no groups of blank lines exceeding 2 (\n{2}).

Your Tasks:

1. Find all of the speakers. Use <spkr> in your replace window to wrap all of the speakers.
Record your Find and Replace expressions with a brief description and any additional
alterations you made to the text file.

Bonus: Tag all of the speeches and corresponding speakers. Use <sp> for speech and <spkr>
for speaker. Record your Find and Replace expressions with a brief description and any
additional alterations you made to the text file. [Hint: remember how you wrapped chapters or
acts!]

2. Find all of the stage directions in parenthesis. Tag all of the stage directions with <sd>
removing the pseudo-markup (a.k.a. the parentheses). Record your Find and Replace
expressions with a brief description and any additional alterations you made to the text file.

3. Make sure you add a root element and verify your new XML file is green in 0Xygen.

4. Upload two files on Courseweb for this exercise:

1. a plain-text file in which you recorded your steps
2. your end result: the XML file you create

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://newtfire.org/dh/explainRegex.html
http://www.regular-expressions.info/tutorial.html
http://dh.newtfire.org/War-of-the-Worlds-1938-regex.txt

136

newtFire {dhlds}

Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last
modified: Sunday, 06-Aug-2017 18:16:42 EDT. Powered by firebellies.

XPath Exercise 1

First of all, download the XML file I have linked here:
ForsterGeorgComplete.xml. Open the file in 0Xygen and work with the XPath 2.0 Window. Respond
to the XPath questions below in a text file, and upload to Courseweb for this assignment when you’re
finished. (Please use an attachment! If you paste your answer into the text box, CourseWeb may
munch the angle brackets.) Some of these tasks are thought-provoking, and even difficult. If you get
stuck, do the best you can, and if you can’t get a working answer, give the answers you tried and
explain where they failed to get the results you wanted. Sometimes doing that will help you figure
out what’s wrong, and even when it doesn’t, it will help us identify the difficult moments. These
tasks require the use of path expressions and predicates, and there may be more than one possible
answer. You may opt to try the functions count() and not(), but they should not require any other
XPath functions. Consult our introductory guide Follow the XPath! for help with constructing your
expressions.

With the Georg Forster file open in 0Xygen and using the XPath 2.0 browser window in oXygen,
construct XPath expressions that will do the following. Be sure to give the FULL XPath
expression you used in your answer, and don’t just report your results. This way, if the answer is
incorrect, we can help explain what went wrong.

1. Like most of the long voyage publications, Georg Forster’s voyage account is produced in
multiple books, and inside each books we find multiple chapters. Both books and chapters are
coded with <div> elements. Take a look at the outline view of the document before you begin
to familiarize yourself with the structure of this file, and answer the following:

How can XPath tell apart the books from the chapters?

What XPath would find ONLY the books in the file?

What XPath would find ONLY the chapters in the file?

What XPath would find ONLY the chapters in Book 2?7

(o]

O O O

2. Look at the outline structure of the document to help you with these: What’s the XPath to
identify the <head> element inside a chapter <div>? How would we locate a <I> (or line)
element inside a chapter <div>?

3. Georg Forster used a lot of footnotes in his document: These are coded inside <ref> elements
throughout the body paragraphs of the text. What’s the XPath to locate all the notes in the
document?

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://dh.newtfire.org/ForsterGeorgComplete.xml
http://courseweb.pitt.edu/
http://dh.newtfire.org/explainXPath.html

137

4. We’ve encoded lots of <placeName> elements in this document to mark names of places, and
these may occur in lots of positions. Sometimes they’re in the <head> elements that start the
book or chapter divs, positioned inside lines of texts (coded with <I>). Most often they’re
nested in the body paragraphs (<p>), and they’re frequently coded in Forsters notes, which
you’ve just located.

o What’s the XPath to determine the number of placeNames that appear inside ONLY the
<head> elements, and not in the rest of the document? (Notice where these are located in
the heads).

o What’s the XPath to find the placeNames that are only mentioned in the notes?

o What’s the XPath to find the placeNames that are only mentioned in the notes of Book 1?7
How many of these are there?

138

newtFire {dhlds}
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last
modified: Sunday, 06-Aug-2017 18:16:42 EDT. Powered by firebellies.

XPath Exercise 2

Again for this exercise, we'll be working with our XML of Georg Forster's
voyage narrative. Download the XML file I have linked here: ForsterGeorgComplete.xml. Open the
file in 0Xygen and work with the XPath 2.0 Window. Respond to the XPath questions below in a text
file, and upload to Courseweb for this assignment when you're finished. (Please use an attachment! If
you paste your answer into the text box, CourseWeb may munch your brackets.) Some of these tasks
are thought-provoking, and even difficult. If you get stuck, do the best you can, and if you can’t get a
working answer, give the answers you tried and explain where they failed to get the results you
wanted. Sometimes doing that will help you figure out what’s wrong, and even when it doesn’t, it
will help us identify the difficult moments.

These tasks require the use of path expressions, predicates, and the functions count(), not(),
name(), and distinct-values(), but they should not require any other XPath functions. There may be
more than one possible answer. You may find class notes and our introductory guide Follow the
XPath! a helpful resource as you proceed. With the Georg Forster file open in 0Xygen and using the
XPath 2.0 browser window in 0Xygen, construct XPath expressions that will do the following. Be
sure to give the FULL XPath expression you used in your answer, and don't just report your
results. This way, if the answer is incorrect, we can help explain what went wrong.

Georg Forster often took note of when latitude and longitude coordinates were measured during his
trip with Captain Cook. We've spent some time capturing and coding these (with help from regular
expressions!), and now we can use XPath to work with our geographic coordinates. We've used <geo
select="lat"> for latitude readings, and <geo select="lon"> for longitude readings.

1. Write an XPath expression to locate all the geo elements in Book I that contain latitude
measurements. How many are there (only in Book I)? Check the number in the 0Xygen result
window (Description line) if you like. Be careful if you use the count() function here that
you're getting only the count in Book I.

2. These latitude measurements you've just looked up are all held inside paragraphs, or the <geo
select="lat"> element. What would you add to the previous XPath expression to return the
paragraphs that hold latitude measurements in Book 1? Give your complete XPath expression
here.

3. Write an XPath expression to find the first paragraph in Book III, Chapter 1 that contains a
latitude reading. What's the number of this paragraph as coded in the file?

4. Write an XPath to bring up all the paragraphs in this WHOLE file that contain both latitude
AND longitude readings. How many of these paragraphs are there?

5. Are there any paragraphs in this WHOLE file that do NOT have a latitude measurement, but
DO have a longitude? What XPath expression reveals these? And how many of these
paragraphs are there?

6. Explain why the following two XPath expressions return different results. Run each XPath
expression, review the results, and explain what you think each expression is returning.
o //p[geo]/placeName][1]
o (//p[geo]/placeName)[1]

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://dh.newtfire.org/ForsterGeorgComplete.xml
http://courseweb.pitt.edu/
http://dh.newtfire.org/explainXPath.html

139

newtFire {dhlds}
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last
modified: Sunday, 06-Aug-2017 18:16:43 EDT. Powered by firebellies.

XPath Exercise 3

To begin, download this XML file from our Pacific Voyage project that I have
linked here: ForsterGeorgComplete.xml. Open the file in <oXygen/> and work with the XPath 2.0
Window. Respond to the XPath questions below in a text file, and upload to Courseweb for this
assignment when you’re finished. (Please use an attachment! If you paste your answer into the text
box, Course Web may munch your brackets.) Some of these tasks are thought-provoking, and even
difficult. If you get stuck, do the best you can, and if you can’t get a working answer, give the
answers you tried and explain where they failed to get the results you wanted. Sometimes doing that
will help you figure out what’s wrong, and even when it doesn’t, it will help us identify the difficult
moments.

These tasks require the use of path expressions, predicates, and the functions count(), not(),
name(), position(), last(), and distinct-values(), but they should not require any other XPath
functions. There may be more than one possible answer. To read about these functions, you should
consult The XPath Functions We Use Most page and if you have the Michael Kay text, it may be
useful to you here. As always, consult our class notes and our introductory guide Follow the XPath!.

With the Georg Forster file open in 0Xygen and using the XPath 2.0 browser window in 0Xygen,
construct XPath expressions that will do the following. Be sure to give the FULL XPath
expression you used in your answer, and don’t just report your results. This way, if the answer is
incorrect, we can help explain what went wrong.

** Notation: For ease in recognition, from now on when we refer in discussion to an attribute name,
we’ll precede it with an at sign (@). In other words, when we write about the @type attribute below,
the name of the attribute is actually type (without an at sign).

1. Working with @type:

1. Write an XPath using a function that returns a count of number of times we’ve used
@type attributes in the Georg Forster file.

2. What’s the XPath to return the parent elements (whatever they are) of @type?

3. Modify the XPath in your previous statement to return in the bottom results window the
names of those parent elements

4. Modify the XPath expression once more to return a list of only the distinct-values of
those parent elements.

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://dh.newtfire.org/ForsterGeorgComplete.xml
http://courseweb.pitt.edu/
http://dh.obdurodon.org/functions.xhtml
http://dh.newtfire.org/explainXPath.html

140

2. Working with attributes of ANY kind:

1. Write an XPath expression to return all the attributes of any kind, anywhere in this file.

2. Using the name() function, build on your previous XPath expression to return the names
of these attributes.

3. Now, return only the distinct-values of those attribute names: What XPath expression
does this?

4. Now, what if we wanted to find all the parent elements (without knowing what they
are) of any attributes in use within the body element of the file? Write the XPath
expression.

5. What’s the XPath to return the distinct-values of the names of those parent elements in
the body of the file.

6. How many distinctly different element names are holding attributes of any kind? (What
expression returns this as a count?)

3. Working with the count() and position() functions in predicates: (count(), position(), last()):
(You’ll need to look up how to look for a count() of something and set it equal to, greater than,
or less than a particular number.)

1. Write an XPath expression that returns the last paragraph in the ENTIRE Georg Forster
file that contains more than one latitude record, coded as <geo select="lat">. (Hint:
This builds on things we showed you in the XPath Exercise 2 homework. Note that you
should only get ONE result here!)

2. Modify the expression so you return the first paragraph in the ENTIRE Georg Forster
file that contains more than two latitude records. (There’s no such thing as a first
function, but remember how we found the first, second, and third books and chapters in
past XPath exercises? The same working with position numbers applies here.) Again,
you should only get one result in your results window.

3. Now, how would we write XPath to find the very last paragraph in Book 2 that
contains more than 1 latitude record? As before, you should only get one result for
this.

4. Now, can you write an XPath expression that finds the very first paragraph holding
more than two latitude records, that also holds more than one placeName element?

5. How would you modify the previous expression to return the contents of the placeName
elements in that paragraph? What are the placeNames?

4. Optional Bonus Challenge Question: Try out an XPath function on this file that we haven't
yet assigned. Look up functions in the links posted here in our instructions, or in the Michael
Kay book if you have it. Explain what you tried, give your XPath expression, and describe its
results in your return window.

141

newtFire {dhlds}

Authored by: Alexandra Krongel (alk157 at pitt.edu) Edited and maintained
by: Elisa E. Beshero-Bondar (ebb§ at pitt.edu) Last modified:
Tuesday, 10-Oct-2017 15:30:24 EDT. Powered by firebellies.

XPath Exercise 4

You can find an XML (TEI) version of our Fall 2015 DH class syllabus at
http://newtfire.org/dh/dhCDA-2015 .xml. Right-click to download and save this file locally on your
computer, and open it in <oXygen/>.

You should consult The XPath Functions We Use Most page and especially its section III. on Strings.
Also, if you have the Michael Kay text, it may be useful to you here. As always, consult our class
notes and our introductory guide Follow the XPath!. After you’ve completed your homework, save
your answers to a file and upload it to CourseWeb as an attachment. (Please use an attachment! If
you paste your answer into the text box, CourseWeb may munch the angle brackets.) Some of these
tasks are thought-provoking, and even difficult. If you get stuck, do the best you can, and if you can’t
get a working answer, give the answers you tried and explain where they failed to get the results you
wanted. Sometimes doing that will help you figure out what’s wrong, and even when it doesn’t, it
will help us identify the difficult moments. These tasks require the use of path expressions,
predicates, and functions, and in this exercise we concentrate on functions that manipulate strings.
There may be more than one possible answer.

Using the syllabus XML document and the XPath browser window in <oXygen/>, construct XPath
expressions that will do the following (give the full XPath expressions in your answers, and not just
the results):

1. There are two books referenced in the syllabus using the tag <bib1>. What Xpath will return a
semicolon-separated list of the authors?
2. 1. Which 'div' elements contain references to 'homework'? How many results do you
return?

2. Can you figure out how to retrieve the immediate parent element containing the word
"homework"? (Hint: it involves looking for any element below the div and then its text()
node, since we need the element whose *text* contains the word "homework.")

3. 1. What XPath returns all the Fridays on the syllabus? (Scroll through the document
looking for the date elements to help determine this.)

2. Now, what if we want to return those dates in their ISO format, as yyyy-mm-dd? Can
you retrieve that with XPath? (Hint: Look at the attribute values on the date elements.)

3. Return a string-joined list of all these dates, separated with a comma and a space.

4. 1. How many div elements of @type 'assign' contain references to word "GitHub"?

2. Find the longest and shortest div elements of this type (that contain the word "GitHub")
in the document. How long and short are they? Hint: You will need to use min(), max(),
and the string-length() function here, as well as some complex predicates.

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://dh.newtfire.org/dhCDA-2015.xml
http://dh.obdurodon.org/functions.xhtml
http://dh.newtfire.org/explainXPath.html

142

5. Reformatting Dates: In Question 3, you located the Fridays on the syllabus, most likely
through XPath to reach element text contents. What if you only worked with the ewhen
attribute values on <date>, without looking at the text element content? Could you determine
the Fridays on the syllabus just from that content alone? Yes, you can, and though this may not
seem practical since we already have days of the week noted in our document, consider this a
challenge, as if those M, W, and F designations were missing, or as if you had to work with a
list of numerical dates without knowing their days of the week. To retrieve this, you need an
XPath function you probably have not seen before: format-date(), to use with xs:date. You
can read about these in the Michael Kay book on pages 781-788, or on the W3C specifications
page for XSLT functions, as well as in the Safari XSLT book online.

The function format-date() can take a string of text that it identifies as a date and can be set
to reformat that date in many different ways: It could give the name of the month, the year as
the phrase "Two Thousand and Fifteen", and, yes, the day of the week to accompany a day,
output in upper or lower case letters as you wish. It might also be converted and expressed as a
Buddhist, Mohammedan, or Japanese calendar date (among many others).

For this last task, do some reading on format-date in one or more of the resources we’ve linked
here. Then try the following:

1. Working only with the ewhen attribute on the date elements on our syllabus file, convert
those dates in the return window so that they display days of the week (and anything else
you wish from the various available date-formatting codes. To do this, you’ll need to see
how to work with format-date(). It works with at minimum, two arguments (though it
can take up to five). At minimum it needs to contain 1) something that it understands as
a date, and 2) a picture string to designate (or "picture" if you will) the output, using a
special notation of letter codes inside square brackets, examples of which you can look
up in the references we’ve mentioned and linked here. Here is a model of how format-
date looks with the minimum two arguments, working on a string of text marked as a
dot: . (to indicate the self:: axis—the current context node in an XPath expression):
//some-XPath-here-that-leads-to-the-dates-you-want/format-
date(xs:date(.), '[FNn]/ [MNn]/ [Dwo] / [YWw]')

The first argument of format-date() takes the current XPath date (each date attribute on
the syllabus) and recognizes it as a date via xs:date(.) Then, the second argument (after
the comma) sits inside the single quotation marks. The values inside []s or square
brackets are the picture strings which designate FNn (day of the week--initially
capitalized to lower case, then Month (same thing with the capitalization), then a day of
the month spelled out as a word, and finally the year converted from a number to a string
of words. We have positioned a / in between each picture string as a separator. Try
appending the format-date() code from this example into your XPath that reaches into
the @when attribute on date, plug it into your XPath window and notice what it outputs in
the return window. And try tinkering with it to change it, using different picture strings.
Record at least two different ways you adjusted this code to output different
formats of date that you tried here, and their output.

2. Now that you see how picture strings work in the format-date () function, we think you
now know enough to take a numerical string of text from the @when attribute, convert it
to retrieve days of the week, and then output only the Friday dates on the syllabus. We
don’t care how you decide to format the rest of the date, as that is up to you, but we
would like you to write an XPath that first filters to find the dates you need, and then
outputs those dates however you wish to output them. Hints: You will need to use a
predicate, and you want to put the contains() or matches() function around the format-
date() function, after the part of the XPath expression where you drill down for dates.

http://www.w3.org/TR/xslt20/#function-format-date
https://www.safaribooksonline.com/library/view/xslt-2nd-edition/9780596527211/ch04s05.html

143

3. One last challenge: Modifying your functions, can you output all of the Friday dates in
October only? Record the XPath. Hint: You probably want multiple predicates for this.

144

newtFire {dhlds}
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last modified:
Monday, 19-Feb-2018 17:57:25 EST. Powered by firebellies.

XQuery Exercise 2

Our second XQuery homework exercise works with our Digital Mitford project files,

coded in TEI. Here’s how to locate this collection in our eXist at the Pittsburgh Supercomputing Center:
collection('/db/mitford").

IMPORTANT: You’ll need to declare the TEI namespace at the top of any XQuery you run on these TEI files
or you won'’t see any output. (Declare the namespace in the line just under xquery version "3.1";). Here’s the
line you need for that:

declare default element namespace "http://www.tei-c.org/ns/1.0";

Write XQuery expressions for each of the following tasks. Paste these into a text file or a document, and where
we ask you to do so, record your return or output. Save your file using our standard homework filenaming
conventions (as in besheroXQuery2.txt), and upload your assignment to Courseweb.

1. First, let’s do some exploring. This is a large collection of files, so we might want to look at a complete list
of their file names and get a count of the number of files. For this, we use the XPath function base-uri().
Write a statement in XQuery that returns the base-uri() (or filename) for each file in the Mitford collection.
How many files are there? (Record the number.) Wrap the expression in a count () function so you return
the number, and record the expression you used.

2. Starting from the collection(), write a basic XQuery expression to show you the coding of the files,
using /*, so that you can see how to locate the <title> element inside the <teiHeader> and
<titlestmt>. Copy this into your text file recording this homework exercise.

3. Begin working on FLWOR expressions. First, write a very simple FLWOR statement to define variables
that will return the following:

o
o

the whole collection

the particular texts in the collection, starting from the <body> element in our TEI files. (You’ll need
this later.)

the main title of the files (as described in #2: up in the <teiHeader>, inside the <titlestmt>).
Write a return statement to return the text ONLY of the main titles of the files in this collection.
Refer to what you learned in XQuery Exercise 1 about the differences between text() vs. string().
Which one of these should you use here and why? (Copy your FLWOR into your text file for this
homework exercise, together with your explanation.)

How many titles did you return? (Record the number.) Note: You should actually return one extra
title compared to the number of file names you returned, which surprised us as we worked with the
collection, until we realized that one file here actually has two <title> elements inside its
<titleStmt>.

Bonus: In Real Life we would write some more XQuery to figure out what is going on when we
receive a puzzling result like this. To find out which file is the culprit, with two titles instead of one,
we wrote a little more XQuery code, using a "for loop" and another variable to return the file in
question. See if you can write the code to locate that file for a bonus on this assignment. Record your
XQuery and give the two titles of the file.

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://dxcvm05.psc.edu:8080/
http://dh.newtfire.org/XQueryExercise1.html

145

4. Build on your FLWOR expression. We are looking for some very important personal contacts of Mitford
whose names turn up in the //body of more than 15 files in the Digital Mitford collection. Note:

o

o

We don’t want results from the TEI Header because that would include the current Mitford editors,
so we want to define our variable with an XPath that drills into the body element of each file.

Each person is coded with a distinct identifier held in an @ref attribute: <persName ref="#id">,
which helps us to keep track of people when they are referred to by different names in the archive.
Define a variable to collect a list of the distinct values of this eref attribute. Note: To get output in
XQuery when you collect a list of attribute values, you need to return the string() value of the
attribute. (Check your results here. We returned 711 distinct values of the eref attribute on the
<persName> element across the collection.)

What we need to do next is something like building an index in a book. We have isolated the 711
distinct values of all the identifiers for people across the collection. We now need a way to check
and see if a file contains a <persName @ref> that matches each single entry in that list of distinct
values, since those entries are now just a simple dereferenced list, and pulled out of their XPath
context. A good example of what we are doing is the index of a printed book: You go to the back of
a book and look up a word or phrase that is only listed once, and find out all the different places in
the body of the book that mention it, so you can flip back and find what you need. What we are
doing here is similar: We want to define a new variable in XQuery to look up for us which files are
holding each entry on our list of distinct values. We’ll need to test each entry in our list of distinct
values (using a "for loop") and map it back into the XML tree to locate the files holding it. You will
need a predicate expression that uses a comparison operator (and we used a General Comparison
operator, the equal sign = to filter which files contain <persName> elements with @ref attributes
equal to the current distinct value in the "for loop". Here is a review of comparison operators, which
you used in the XPath assignments.

Now, use the where statement in the FLWOR to filter your results so that you return only the distinct
@ref attributes that are seen in more than 15 files. Note: This make take about 15 seconds to run, so
do not be alarmed if eXist seems to pause a little while. Our collection of files is pretty large and you
are testing a list of 711 distinct values in your "for loop"! When the dust settles, you should return a
list of 10 name ids, a "top 10" list of popular names in the Digital Mitford collection.

We’d like to return the output without the hashtag (#) in front, and we want to output the results in
alphabetical order by the eref (without hashtag). To eliminate the hashtag, we recommend either the
tokenize () function we used in the previous assignment, or the translate() function (read about
these in Michael Kay or look it up in The XPath Functions We Use the Most.

Reading our Explain XQuery Guide to look up the details, write the FLOWR statement to order by
the distinct @ref that is most frequently referenced.

Add the appropriate word to the "order" statement to generate these results in reverse order. (Refer
to our guide linked here.)

http://newtfire.org/dh/explainXPath.html#comparison
http://dh.obdurodon.org/functions.xhtml
http://dh.newtfire.org/explainXQuery.html

146

5. Finally, we will build an HTML file around your XQuery results using curly braces { } where necessary.
changes to our ﬁEthough, because we are working with two different namespaces now, HTML and TEI.
Alter the top lines of the XQuery so they look like this:

xquery version "3.1";
declare default element namespace "http://www.w3.0rg/1999/xhtml";
declare namespace tei="http://www.tei-c.org/ns/1.0";

And begin building your HTML around your FLWOR so the basic outermost structure of the file is set:

xquery version "3.1";
declare default element namespace "http://www.w3.0rg/1999/xhtml";
declare namespace tei="http://www.tei-c.org/ns/1.0";
<html>
<head><title>Top Ten Most Referenced People in the Digital Mitford Project</title></head>
<body>

{
. . . FLWOR HERE. . .

[use the tei:prefix on any TEI element names here]
Return $something

}
</body>
</html>

6. Build an HTML table in the HTML body part of the file to contain table rows and two columns of cells
(two cells side by side in each column).

o The first cell will contain each of the top ten the translated and sorted eref value (without hashtag)
that you retrieved in number 4.

o In the other cell, return a string-joined list of the base-uri() or filenames of each file that contains
the match, separated by commas. You might just want to trim down that base-uri() so you only
return the filename at the end (like we did in XQuery Exercise 1. Here is our HTML table output to
view in a web browser. (View Page Source to look under the hood at the HTML code.)

7. Bonus: Instead of using string-join() to list out the multiple filenames in your second table cell, can
you work out how to output that list of names in its own table, nested inside that second table cell? Inside
the table cell, you will need to nest a new FLWOR statement inside a new set of curly braces, in which
you’ll make another for statement. Return your output in table rows with a single column of cells.

Copy your HTML and FLWOR constructions into your document to upload to Courseweb.

http://dh.newtfire.org/explainXQuery.html#Curly
http://dh.newtfire.org/XQueryExercise1.html
http://newtfire.org:8338/exist/rest/db/jonhoranic/TopTenMitfordPeeps.html

147

newtFire {dhlds}
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last modified: Monday, 19-Mar-2018 06:42:56 EDT.
Powered by firebellies.

XSLT Exercise 2

The input text

For this assignment we’ll be producing HTML from a TEI XML file developed by the Akira project team on newtFire in the spring of 2018. The
XML file is available here: http:/newtfire.org/dh/Akira tei.xml. You should right-click on this link, download the file, and open it in <oXygen/> (or
you can pull it in locally from the DHClass-Hub where it is in Class Examples --> XSLT).

Housekeeping: Setting Up a TEI to HTML Transformation

When you create an new XSLT document in <oXygen/> it won’t contain that instruction by default, so whenever you are working with TEI you need
to add it (See the text in blue below). To ensure that the output would be in the XHTML namespace, we added a default namespace declaration (in
purple below). To output the required DOCTYPE declaration, we also created <xs1:output> element as the first child of our root <xs1:stylesheet>
element (in green below), and we needed to include an attribute there to omit the default XML declaration because if we output that XML line in our
XHTML output, it will not produce valid HTML with the w3C and might produce quirky problems with rendering in various web browsers. So, you
should copy our modified stylesheet template and xsl:output line here into your stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns:math="http://www.w3.0rg/2005/xpath-functions/math"
exclude-result-prefixes="xs math"
xmlns="http://www.w3.0rg/1999/xhtml"
version="3.0">

<xsl:output method="xhtml" encoding="utf-8" doctype-system="about:legacy-compat"
omit-xml-declaration="yes"/>

</xsl:stylesheet>

Overview of the assignment

We’re going to work with this entire XML document (on all levels of the hierarchy), concentrating on processing the XML "salad" of mixed text and
in-line elements to style them for presentation on the web in HTML’s limited tagset. You can use some of the basic HTML in-line elements, like
for emphasis or for strong emphasis, but you’ll also want to use CSS to set some elements to have different colors or background colors or
to alter borders or fonts or font sizes or font styles (e.g., italic) or font weights (e.g., bold) or add text decoration (e.g., underlining) or text
transformation (e.g., convert to all upper case), really anything stylistically possible.

For this assignment, we aim to produce an HTML reading view of the Akira script, to help orient readers to the cast of characters and to help
visualize some special markup the team has applied to help locate special scenes. The exercise will help orient you to styling and layout decisions
connected with transforming XML to HTML, and it will also give you a chance to "remix" the XML creatively into something designed for display
in a web browser.

Surveying the "input" TEI document, you will see it has a TEI header to hold information about the Akira document, its source, and the work of the
project team. We will pick and choose which portions of this to process and output in the body of an HTML document (remembering that the body
element in HTML is the part that is visible in a web browser), and we may want to change the order it appears in the new document. We will take
some material from the TEI header to display in the HTML body, for example, and we will try sorting the list of characters that appears in the TEI
profileDesc to present a title and cast list at the top of the HTML file.

The following portions of the input document are especially important to us to display in HTML:

e The profilepesc in the teiHeader contains a list of characters we will want to sort alphabetically. We will want to output make a cast list or
key of names and abbreviations.

¢ We will want to process the script itself, with its sp elements and the information coded in the attributes, including the speaker id, the number,
and, where available, the time segment.

¢ Within those sp elements we want to process the 1 elements to hold them on separate lines.

¢ When sp elements are inside special sections coded as spGrp, we want to hold these in their own HTML div elements to distinguish them
from other parts of the script.

Some of these elements are located inside the <teiHeader>. Some are nested unevenly at different levels of the XML tree hierarchy, like some of the
<sp> elements nested inside <spGrp> elements, and the <1> elements sitting inside of <sp> elements. You may not be sure at the outset which
elements can be inside which other ones, or how deeply they can nest. Happily, with XSLT, unlike with many other programming languages, you
don’t need to care about those questions!

An example of possible desired output can be found here http://newtfire.org/dh/akiraSample.html, though we did not style the body paragraphs in this
output file. It is important to note that the majority of the styling choices on this file are controlled with a CSS file. You will make your own CSS and
relate it to your XSLT; therefore, your stylistic choices might vary greatly from ours and your output may look completely different. What should
look relatively similar is the underlying raw HTML, which is generated by running the XSLT. By viewing the page source of our output you can
review the underlying raw HTML (http://newtfire.org/dh/akiraSample.html).

Guide to Approaching the Problem

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://dh.newtfire.org/Akira_tei.xml
http://dh.newtfire.org/akiraSample.html
http://newtfire.org/dh/akiraSample.html

148

In XSLT, processing something normally happens in two parts. You normally have an <xs1:apply-templates> element that tells the system what
elements (or other nodes) you want to process, and you then have an <xs1:template> element that tells the system exactly how you want to process
those elements, that is, what you want to do with them. If you find the image helpful, you can think of this as a situation where the <xs1:apply-
templates> elements throw some nodes out into space and say "would someone please process these?" and the various <xs1:template> elements sit
around watching nodes fly by, and when they match something, they grab it and process it.

Therefore, for this assignment, your XSLT transformation (after all the housekeeping) should have several template rules:

. Begin with a special template rule for the document node (<xs1:template match="/">),in which you set up the basic HTML structure:
the <htm1> element, <head> and its contents, and <body>.

2. Inside the <body> element that just created, write an HTML h1 element to hold the title you want viewers to see on the web page, and use

xsl:apply-templates inside to select the part of the input TEI that will give you the title. When you need to set the value of the éselect

attribute on xs1:apply-templates, you are being choosy, pulling just what you need into position where you want it.

Beneath the main title, create a secondary header in HTML (an h2 element), just type the words "Cast List" into it. You are basically writing

some HTML code within the XSLT document!

4. Set up an HTML table, and give it a row of two th (table header) cells to help start a table of abbreviated IDs and values. After the table
header, you will want to simply apply-templates to select each TEI person element to process in a new template rule. Anything that is going to
have to be processed multiple times needs to just be called once in the special template match on the document node, to apply-templates
selecting these elements.

. Write a new template rule to match on the TEI person element and output (each time it finds person) an HTML table row (tr) containing two
cells (td). Inside each cell, pull the relevant information from the person element that you wish to present. (We recommend outputting the
@xml:id in one table cell, and just the first persName element.)

6. Then create separate template rules that match on each of the inline elements we planned above to match and style. Each rule will be "called"

or "fired" as a result of the preceding <xs1:apply-templates> selection from our first template rule.

hd

W

In this case, then, your @select on the <xsl:apply-template> elements inside the template rule for the document node will tell the system what
specific elements (using their XPath location in the source XML) you want to appear and where in your output HTML you wish for them to appear.
You create the order each selection appears by placing the various <xs1:apply-template> elements in the desired order inside of that first template
rule matching on the document node. This will tell the system that you want to select only certain elements, at which point the template rule for the
document node will call out what portions of the document need to be processed at this particular point. The processing work actually gets done by
the other <xs1:template> rules, the ones that you write to then match on the elements that need styled.

The elegant simplicity of <xsl:apply-templates>

Akira's spGrp elements wrap around clusters of speeches unpredictably. Similarly, if you were processing prose paragraphs with markup floating
around unpredictably with the text, you would have an unpredictable combination of elements that we call "mixed content", with varied and
unpredictable combinations of elements. This is the problem that declarative XSLT was designed to solve. With a traditional procedural
programming language, you’d have to write rules like "inside the body, if there’s a <spGrp> do X, but if there isn’t do Y, and, oh, by the way, check
whether there’s a <1> or a <p> inside the <sp> elements, etc." That is, most programming languages have to tell you what to look for at every step.
The elegance of XSLT is that all you have to say inside paragraphs and other elements is "I'm not worried about what I'll find here; just process
(apply templates to) all my children, whatever they might be."

The way to deal with mixed content in XSLT is to create a template rule for every element you care about and use it to output whatever HTML
markup you want for that element. Then, inside that markup, you can include a general <xs1:apply-templates/>, not specifying a @select
attribute. For example, if you want your <persName> elements to be tagged with the HTML tags, which means "strong emphasis" and
which is usually rendered in bold, you could have a template rule like:

<xsl:template match="persName">

<xsl:apply-templates/>

</xsl:template>

You don’t know or care whether <persName> has any children nodes or, if it does, what they are. Whatever they are, this rule tells the system to try to
process them, and as long as there’s a template rule for them, they’ll be taken care of properly somewhere else in the stylesheet. If there are no

children nodes, the <xs1:apply-templates/> will apply vacuously and harmlessly. As long as every element tells you to process its children, you’ll
work your way down through the hierarchy of the document without having to know which elements can contain which other elements or text nodes.

Taking stock: when to use @select

In our XSLT tutorial we describe the use of <xsl:apply-templates select=".."/> which specifies exactly what you want to process and where.
That makes sense when your input and output are very regular in structure. Use the éselect attribute when you know exactly what you’re looking for
and where you want to put it. We will want to use <xsl:apply-templates select=".."/>in order to grab all of the <person> elements sitting inside
of the <particbesc> element so we can output them up in a Cast List near the top of our HTML file, separate from the Akira script that we want to
come out below, selected from the TEI <body> element. We will also want to use the <xsl:apply-templates select=".."/> in order to reach for
attribute values like the @xml:id on person to output them inside HTML table cell (td) elements. By setting up these very specific selections of these
elements and attributes, we are paring down or "trimming" the XML tree of the input document to designate exactly and only what we want.
Remember. what is represented in the <htm1> element of your XSLT is the basic superstructure of your output HTML document. The content inside
the HTML <head> element, including the <title> element, will not appear in the web browswerunless someone is reading your HTML source code.
Hence the importance in creating visible body headings with elements (<h1>, <h2>, etc.) that contain the document title information.

After you have selected the portions of the document to process for your Cast of Characters table, and to output the script, for the rest of this
assignment you don’t need to write the template rules in any particular order. Those template matches will fire as elements in the document turn up to
be processed, whenever it comes up. Basically, <xs1:apply-templates/> without the @select attribute says "apply templates to whatever you find."
Omit the @select attribute where you don’t want to have to think about and cater to every alternative individually. (You can still treat them all
differently because you’ll have different template rules to "catch" them, but when you assert that they should be processed, you don’t have to know
what they actually are.)

http://dh.newtfire.org/explainXSLT.html

149

Sorting

An alphabetically sorted Cast of Characters may be useful for humans who want to look up more information about a speaker they see in the script.
We want to make an alphabetized list sorted by the abbreviated name given in the person/@xml:id. Start by looking up <xs1:sort> in the Michael
Kay book or at https://www.w3schools.com/xml/xsl sort.asp. So far, if we want to output our cast in the order in which they occur Akira script,
we’ve used a self-closing empty <xsl:apply-templates/> to select them with something like <xs1:apply-templates

select="descending: :particDesc//person"/>. But the self-closing empty element tag is informationally identical to writing the start and end tags
separately with nothing between them, that is:

<xsl:apply-templates select="descendant::particDesc//person>
</xsl:apply-templates>

To cause the elements being processed to be sorted first, you need to use this alternative notation, with separate start and end tags, because you need
to put the <xs1:sort> element between the start and end tags. If you use the first notation, the one with a single self-closing tag, there’s no "between"
in which to put the <xs1:sort> element. In other words, you want something like:

<xsl:apply-templates select="descendant::particDesc//person">
<xsl:sort select="what specific aspect of the person element you want to sort on, such as an attribute or child element"/>
</xsl:apply-templates/>

Without an @select attribute on <xs1:sort> this would sort on child text content of the <person> elements alphabetically by their text value (and if
there is no text, there won’t be anything to sort, so the sort will fail). Since our person elements only contain other elements, we need to use the
@select attribute on <xs1:sort>. Note that you can set an @order attribute to sort in ascending or descending order. Also you do not have to sort
alphabetically. You can sort by numerical counts of something, for example, how often a particular character appears in the script. (We sorted our
Cast Table in both ways.) Challenge: Can you figure out how to sort based on a count of the number of appearances, or the number of times the
character speaks in the production? Hint: To do this requires searching the XML tree for the sp elements whose @who attribute values match up with
the current person element. You will need a string-matching function, because the éwho attributes have a # in front of the id. Typically we strip that
off using the substring-after () function, so we look for the substring-after (@who, '#") to see where that substring = the current () xml:id.
We need to use current () to designate the specific person element being processed (it's a little like processing $i in a for-loop).

What should the output look like

We are sure you can do better than our sample output! HTML provides a limited number of elements for styling in-line text, which you can read
about at http://www.w3schools.com/html/html formatting.asp. You can use any of these in your output, but think about your decisions. For layout
purposes, block elements like div or h1 or p literally take up a rectangular "block" on the page and can be styled accordingly (given padding, etc.
Inline elements, like span or em Or strong are meant to run within blocks (inside paragraphs, for example), and are good for highlighting within the
line, for example to style speaker names or speech numbers to introduce each speech. Finally, presentational elements, the kind that describe how text
looks (e.g., <i> for "italic"), are generally regarded as less useful than descriptive tags, which describe what text means (e.g., for "emphasis").
Both of the preceding are normally rendered in italics in the browser, but the semantic tag is more consistent with the spirit of XML than the
presentational one.

The web would be a dull world if the only styling available were the handful of presentational tags available in vanilla HTML. In addition to those
options, there are also ways to assign arbitrary style to a snippet of in-line text, changing fonts or colors or other features in mid-stream. To do that:

1. Before you read any further in this page, read Obdurodon’s Using and @class to style your HTML page.

2. To use the strategies described on that page, create an XSLT template rule that transforms the element you want to style to an HTML div or
 element with a @class attribute. For example, you might transform <spGrp> in the input XML to <div class="spGrp">...child nodes
(processed in XSLT with <xs1:apply-templates/>) ... in the output HTML. You can then specify CSS styling by reference to the
@class attribute, as described in the page we link to above.

Note that you can make your transformations very specific. For example, instead of setting all <sp> elements to the same HTML eclass, you
can create separate template rules to match on special sp[@who="#colonel"] and sp[@who="#doctor"] according to their attribute values.
(You can even use the pipe (|) to unify these as two options for a template match:

<xsl:template match="sp[@who='#doctor'] | sp[@who='#colonel']">

<xsl:apply-templates select="@who">
<xsl:apply-templates/>

</xsl:template>>

Notice how we used two <xsl:apply-templates/> statements here, one which selected an attribute value to output, and the other just to
process whatever child contents of the <sp> elements turn up. Around both of them, we set a special element with a logical eclass (we
used the value "commanders" to help associate these two controlling figures in Akira). In our CSS we make reference to the eclass, again as
described in the page we link to above.

(98]

. Setting @class attributes in the output HTML makes it possible to style the various elements differently according to the value of those
attributes, but you need to create a CSS stylesheet to do that. Create the stylesheet (just as you’ve created CSS in the past), and specify how
you want to style your elements. Link the CSS stylesheet to the XSLT by creating the appropriate <1ink> element inside of the HTML
<head> element of your XSLT (you can remind yourself of the <1ink> element format by referencing our CSS Tutorial).

4. Besides wrapping your <xs1:apply-templates/> in elements and other HTML elements, you might consider adding extra spaces or
text outside some of these as well. To do this, experiment with inserting <xs1:text>...</xsl:text> where you would like spaces or
characters (say a colon and some white space to follow a speaker name in the script).

. You may want to style your table so you can see the outlines of the table cells, and add colors and styling. For some guidance, see the
w3schools CSS tutorial on tables, which shows you some nifty tricks like how to style every other row to shade it differently.

W

Your Final Results

https://www.w3schools.com/xml/xsl_sort.asp
http://newtfire.org/dh/akiraSample.html
http://www.w3schools.com/html/html_formatting.asp
http://dh.obdurodon.org/class-and-span.html
http://dh.newtfire.org/explainCSS.html
https://www.w3schools.com/css/css_table.asp

150

What you should produce, then, is:

An XSLT stylesheet that transforms the contents of the source document into HTML, giving us at least one sorted Cast List and a reading view
of the Akira script.

The resulting HTML should also style and at least some of those styles should be set using block <div> and inline elements with the
@class attribute to group related kinds of elements visually.

You need to create a CSS file, linked to your output HTML, that specifies how to style the output document. You can look up the most useful
of the available CSS properties at http://www.w3schools.com/css/. We’d suggesting following the links on the left under "CSS styling" for
styling backgrounds, text, and fonts, as well as the link for borders under "CSS box model".

Important

Before submitting your homework, you must run the transformation at home, and open the results as a new file in <oXygen/> to make sure the
results are what you expect them to be. (There’s a guide to running XSLT transformations inside <oXygen/> on Obdurodon at
http://dh.obdurodon.org/oxygen-xslt-configuration.html.) If you don’t get the results you expect and can’t figure out what you’re doing wrong,
remember that you can post a query to our DHClass-Hub Issues board. Don’t just ask for the answer, though; you need to describe what you
tried, what you expected, what you got, and what you think the problem is. We often find, just as we’re preparing to post our own queries to
coding discussion boards, that having to write up a description of the problem helps us think it through and solve it ourselves. We’re also
encouraging you to discuss the homework on DHClass-Hub Issues because that’s also helpful for the person who responds. Answering
someone else’s inquiry and troubleshooting someone else’s problem often helps us clarify matters for ourselves!

When you complete this assignment, submit your XSLT file and CSS file to Courseweb, following our usual homework file-naming
conventions. We will run your XSLT transformation to see what output it generates, so you do not need to submit your output file. However, it
is important that you include your CSS so we can locally associate it to your XSLT (keeping them in the same folder space) and see your final
output. Link the CSS in the XSLT for us, so that when we run the XSLT it generates the <1ink> element automatically.

http://www.w3schools.com/css/
http://dh.obdurodon.org/oxygen-xslt-configuration.html
https://github.com/ebeshero/DHClass-Hub/issues

151

newtFire {dhlds}
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last modified: Sunday,
22-Oct-2017 21:10:17 EDT. Powered by firebellies.

XSLT Exercise 2

Overview of the Assignment

The Digital Mitford Site Index stores lists of names and information on people, places, organizations, and texts, among
other kinds of named entities referenced in files throughout the Digital Mitford project. For this assignment, we will
work with a slightly modified version of the Digital Mitford Site Index, which you should download from here and open
in <oXygen>. Our goal is to create a structured outline in HTML of all the information about organizations in the site
index. We want to output that in HTML in the form of a list with nested lists inside, representing an outline of first the
categories of organization, and then inside each category, a new list of the organization names. This is something we
actually need to do in the Mitford project: to process portions of the Site Index file to make it readable on the web as a
list. One possible use of a webpage like this is as a list of links, so that each organization name might link to a page of
information on each organization. We don't have to generate those links now. For this assignment, we just want to learn
how to transform XSLT to HTML and to generate the lists themselves by pulling the right content out of our XML.

If you’re feeling adventurous, once you obtain the output we're seeking, you may go on to build other HTML lists,
working with other portions of the XML document, such as the <1istBibl> or <listPerson> sections, which are
formatted a little differently. The only required content of your homework, though, is the HTML outline of
organization types and organization names. For the organization types or categories, we need to pull from the <head>
element sitting inside at the top of each <listOrg> elements in our TEI file. For the organization names, we reach in to
find the individual entries for <org> and their child <orgName> elements inside each <listOrg> element. Each <org>
element contains one <orgName> inside that holds the best-known name of a particular organization. You may first
want to experiment with XPath on the Site Index file to locate the <listOrg> elements and study the XML hierarchy of
the lists. Let’s make the outer list be ordered (or numbered) list in HTML, using the HTML element, and then
make the inner list be an unordered (bulleted) list, using the HTML element.

Your lists in HTML should come out looking something like this, only yours will have a few more entries in each
category, because your XML document contains some new material.

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://dh.newtfire.org/si-modified.xml

1. Archives Holding Mitford's Papers

o

O O 0O OO OO OO O O O OO0 0o

o
o
o
o
o
o
o
o

o

Baylor University, Armstrong Browning Library
Berkshire Record Office

British Library

Boston Public Library

Cambridge University: Fitzwilliam Museum
Duke University Rubenstein Library

Eton College

Florida State University Special Collections
The Women's Library, Glasgow

Houghton Library, Harvard

Huntington Library

University of Iowa Special Collections
Massachusetts Historical Society

New York Public Library

Oxford University, Balliol College Archives
Oxford University, Bodleian Library

Reading Central Library The principal archive of Mary Russell Mitford's personal papers and related
documents, holding approximately 1,000 manuscripts and a nearly comprehensive collection of her

publications.
John Ruskin Library, Lancaster
The John Rylands Library

National Library of Scotland, Manuscript Collections

University of Texas, Ransom Center
University of Reading Special Collections
University of Virginia Special Collections

Wellesley College, Margaret Clapp Library, Special Collections

Wordsworth Trust
Yale University, Beineke Library

2. Organizations Relevant to Mitford's World

o

O O 0O 00O OO OO O O O O O O O O O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0O0O0

Billiard Club

House of Bourbon
Cavaliers

Court of Chancery
Church of England

the Cockney School
Drover

Eton College

High Court of Justice
House of Commons

the Kembles

House of Medici

Mitford

Mr.and Mrs.Mitford

the Moncks, family of John Berkeley Monck
New Model Army
Palmerite

Parliament

Court of Pope Pius VII
Prelacy

the Presybterian faction
Privy Council

Richmond Coach or Stage
Scriblerus Club

Slade family

Taylor and Hessey (publishers)
Tory Party

Twickenham Coach or Stage
Valpy family

Webb family

Weylandite

152

153

3. Fictional Organizations Referenced by Mitford
o Attendants &c.

Citizens

Guards

Guards

Ladies

Nobles (in Julian)

Nobles (in Rienzi)

officers in Charles I

Prelates

O O O 0O 0O O o0 o°

The underlying HTML, which we generated by running XSLT, should look like this:

Archives Holding Mitford's Papers
Baylor University, Armstrong Browning Library</1li>
Berkshire Record Office
British Library</1li>
Boston Public Library</1li>
Cambridge University: Fitzwilliam Museum</1li>
Duke University Rubenstein Library</1li>
Eton College
Florida State University Special Collections</1li>
<1li>The Women's Library, Glasgow
Houghton Library, Harvard
Huntington Library</1li>
University of Iowa Special Collections</1li>
Massachusetts Historical Society</1li>
New York Public Library
Oxford University, Balliol College Archives
Oxford University, Bodleian Library</1li>
Reading Central Library The principal archive of Mary
Russell Mitford's personal papers and related documents, holding
approximately 1,000 manuscripts and a nearly comprehensive collection of her
publications.
</1i>
John Ruskin Library, Lancaster
<1li>The John Rylands Library</1li>
National Library of Scotland, Manuscript Collections</1li>
University of Texas, Ransom Center</1li>
University of Reading Special Collections</1li>
University of Virginia Special Collections</1li>
Wellesley College, Margaret Clapp Library, Special Collections</1li>
Wordsworth Trust</1li>
Yale University, Beineke Library</1li>

</1li>
Organizations Relevant to Mitford's World
Billiard Club</1li>
House of Bourbon</1li>
Cavaliers</1li>
Court of Chancery
Church of England</1li>
the Cockney School</1li>

Drover

Eton College
High Court of Justice
House of Commons</1li>
the Kembles</1li>
House of Medici</1li>

Mitford
</1li>
Mr.and Mrs.Mitford</1li>
the Moncks, family of John Berkeley
Monck

New Model Army
Palmerite</1li>
Parliament</1li>
Court of Pope Pius VII

154

Prelacy</1li>
the Presybterian faction</1li>
Privy Council</1li>
Richmond Coach or Stage
Scriblerus Club</1li>

Slade family
</1li>
Taylor and Hessey (publishers)</1li>
Tory Party
Twickenham Coach or Stage</1li>

Valpy family

Webb family
</1li>
Weylandite</1li>

</1li>
Fictional Organizations Referenced by Mitford
Attendants &c.</1li>
Citizens</1li>
Guards</1li>
Guards</1li>
Ladies</1li>
Nobles (in Julian)
Nobles (in Rienzi)
officers in Charles I
</1li>
Prelates</1li>

</1li>

In HTML ordered and unordered lists, the only elements permitted inside are list items or elements. We’ve nested
them so that each list item in the outside numbered list contains a category type (designating what kind of organization),
followed by an embedded that contains, in turn, a separated bulleted list series, listing the name of each
organization in the list.

Before You Begin: Set up the XSLT Stylesheet to Read TEI

The Digital Mitford's Site Index file is coded in the TEI namespace, which means that your XSLT stylesheet (much as in
the last assignment) requires an instruction at the top to specify that when it tries to match elements, it needs to match
them in the TEI namespace. (When you create an new XSLT document in <oXygen/> it won’t contain that instruction
by default, so whenever you are working with TEI you need to add it (See the text in blue below). To ensure that the
output would be in the XHTML namespace, we added a default namespace declaration (in purple below). To output the
required DOCTYPE declaration, we also created <xs1:output> element as the first child of our root
<xsl:stylesheet> element (in green below), and we needed to include an attribute there to omit the default XML
declaration because if we output it that XML line in our XHTML output, it will not produce valid HTML with the w3C
and might produce quirky problems with rendering in various web browsers. So, our modified stylesheet template and
xsl:output line is this, and you should copy this into your stylesheet:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0"
xmlns="http://www.w3.0rg/1999/xhtml"
xpath-default-namespace="http://www.tei-c.org/ns/1.0">

<xsl:output method="xhtml" encoding="utf-8" doctype-system="about:legacy-compat"
omit-xml-declaration="yes"/>

</xsl:stylesheet>

Guide to Approaching the Problem

Our XSLT transformation (after all this housekeeping) has three template rules:

155

1. We have a template rule for the document node (<xsl:template match="/">),in which we create the basic
HTML file structure: the <html> element, <head> and its contents, and <body>—anything that appears just once
in the HTML document (one to one relationship with the root node). Inside the <body> element that we’re
creating, we use <xsl:apply-templates> and select the <listorg> elements (using an XPath expression as the
value of the @select attribute). And we create our wrapper tags to set up the ordered list of organization
types.

2. We have a separate template rule that matches the <1istorg> elements (holding the lists of organizations), so it
will be invoked as a result of the preceding <xs1:apply-templates> instruction, and will fire once for each
<listorg> element in our Site Index. Inside that template rule we create a new list item (<1i>) for the particular
<listorg> being processed and inside the tags for that new list item we do two things. First, we apply templates
to the <head> for the <1istorg>, which will cause its category description to be output when we run the
transformation. Second, we create wrapper tags for the nested list that will contain the names of the
organizations within that category. Inside that new element, we use an <xsl:apply-templates> rule to
apply templates to (that is, to process) the <org> elements of that <listorg>.

3. We have a separate template rule that matches the <org> elements, which make up the items in the list of
organizations, and that just applies templates to the <orgNname> element within each <org>. This rule will fire once
for each <org> element inside the <1istorg>, and it will be called separately for the <org> elements within each
<listOrg>, so that the orgs will be rendered properly in their respective lists.

We don’t need a template rule for the <head> elements themselves because the built-in (default) template rule in XSLT
for an element that doesn’t have an explicit, specified rule is just to apply templates to its children. The only child of the
<head> elements is a text node, and the built-in rule for text nodes is to output them literally. In other words, if you
apply templates to <head> and you don’t have a template rule that matches that element, ultimately the transformation
will just output the textual content of the head, that is, the title that you want.

Important

¢ Those who like to read ahead or already have some programming experience with other languages may have
noticed that XSLT includes an <xs1:for-each> instruction that could be used to solve this problem. We are
prohibiting its use for now; your solution must use <xsl:template> and <xsl:apply-templates> rules instead.
There’s a Good Reason for this, which we’ll explain later, when we talk about situations where you should use
<xsl:for-each>.

¢ You may notice that two or three of your output bulleted list items show multiple related organization names
squished together. This is because our editors occasionally provided more than one name used for an organization.
Our standing rule is that the most definitive orgName be listed first in the list of names, so we recommend that you
tidy up your list by selecting just the very first available orgName, that is, the first element child named orgName
of org elements you are processing. Alternatively, you may try applying an XPath string-join() function to
output the entries, but you will need to use xs1:value-of instead of xsl:apply-templates because we need to
use xsl:value-of to calculate the results of functions (which removes us from the XML tree). Either approach is
fine with us, and you would use the same @select attribute to indicate what you would like to output.

o Before submitting your homework, you must run the transformation at home to make sure the results are what you
expect them to be. Remember, there’s a guide to running XSLT transformations inside <oXygen/> in our Intro to
XSLT tutorial. If you don’t get the results you expect and can’t figure out what you’re doing wrong, remember
that you can post a query to our DHClass-Hub Issues board. You can’t just ask for the answer, though; you need
to describe what you tried, what you expected, what you got, and what you think the problem is. We often find,
just as we’re preparing to post our own queries to coding discussion boards, that having to write up a description
of the problem helps us think it through and solve it ourselves. We’re also encouraging you to discuss the
homework on the discussion boards because that’s also helpful for the person who responds. Answering someone
else’s inquiry and troubleshooting someone else’s problem often helps us clarify matters for ourselves!

¢ When you complete this assignment, submit your XSLT file and your output HTML file to Courseweb, following
our usual homework file-naming conventions.

http://dh.newtfire.org/explainXSLT.html
https://github.com/ebeshero/DHClass-Hub/issues

156

newtFire {dhlds}.
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last modified: Sunday, 22-Oct-2017 21:10:14 EDT.
Powered by firebellies.

XSLT Exercise 5

The input collection on our DHClass-Hub

For this assignment and the next, you will be working with a digitized XML collection of Emily Dickinson’s poems and you will need to access this
collection in GitHub. This assignment requires you to use our DHClass-Hub so you can work with a a local directory of files rather than just one at a
time as we have been doing up to this point. Here is how to access the directory:

¢ Sync the DHClass-Hub to your computer, or clone the repository if it is not already on your computer. (If you have not synced or cloned a GitHub
repository in a while; please see the instructions posted in our Readme file).

¢ When you have synced the repository, open the DHClass-Hub locally on your computer, and find in it the Assignment-Files directory. Inside it is a
directory named Dickinson that contains a eleven XML files that we are working with as a collection in this assignment.

¢ Copy this Dickinson directory to some other location on your computer outside of your GitHub directories. (We do not want you to push your
homework to the whole class over our DHClass-Hub, so we just need you to make your own private copy of this directory to work with in the
same folder in which you do your homework for this assignment and the next.

e Do not rename the file folder or the files inside, as we need to refer to them as a coherent collection.

Please be careful to copy rather the move the directory out of GitHub! If you move it out of the directory, the next time you sync our DHClass-Hub,
GitHub will prompt you to commit the change and push it, which will effectively eliminate the Dickinson folder. One of us instructors can easily put it
back if that happens, but please alert us ASAP if something goes awry!

Working with a Collection of Files in XSLT

Emily Dickinson made little bundles of her manuscript poems with a needle and thread, and these have come to be known as fascicles by Dickinson
scholars. We have digitally reproduced a bundle that Dickinson scholars have named Fascicle 16 by using a folder or directory, which holds a digital
collection of files together. We can process a whole directory of files using the collection() function in XSLT, so we can represent content from a
whole collection of XML files in one or more output HTML files. One useful application for working with a collection is to process several short XML
files and unify them on a single HTML page designed to merge their content. In this case, we will be representing the poems encoded in eleven small
XML files inside one HTML page, which we will produce with a table of contents giving poems by number and first lines, followed by the full text of
the poems themselves, formatted in HTML with numbered lines. Since these poems are all encoded with the same structural elements, we can use the
collection() function to reach into them as a group, and output their content one by one based on their XML hierarchy. Really, we are treating the
collection itself as part of the hierarchy as we write our XSLT, so we move from the directory down into the document node of each file to do our XSLT
processing.

Using modal XSLT

Besides working with a collection of files, the other interesting new application in this assignment is modal XSLT, which lets you process the same
nodes in your document in two different ways. How can you output the same element contents to sit as list items in a table of contents at the top of an
HTML page, and also as headers positioned throughout the body of your document, below the table of contents? Wouldn’t it be handy to be able to have
two completely different template rules that match exactly the same elements: one rule to output the data as list items in the table of contents, and the
other to output the same data as headers? You can write two template rules that will match the same nodes (have the same value for their ématch
attribute), but how do you make sure that the correct template rule is handling the data in the correct place?

To permit us to write multiple template rules that process the same input nodes in different ways for different purposes, we write modal XSLT, and that
is what you will be learning to write with this assignment. Modal XSLT allows you to output the same parts of the input XML document in multiple
locations and treat them differently each time. That is, it lets you have two different template rules for processing the same elements or other nodes in
different ways, and you use the émode attribute to control how the elements are processed at a particular place in the transformation. Please read the
explanation and view the examples in Obdurodon’s tutorial on Modal XSLT before proceeding with the assignment, so you can see where and how to set
the @mode attribute and how it works to control processing.

Overview of the assignment

For this assignment you want to produce in one HTML page our collection of Emily Dickinson’s eleven poems in Fascicle 16, and that page needs to
have a table of contents at the top. The table of contents should have one entry for each poem, which produces the information we have encoded in
<title> element that is a descendant of the <body> element in our XML source code, together with the first line, and a count of the number of variants
we have recorded in each poem. Below the full table of contents (one line for each poem) you should render the complete text of all eleven poems, and
wrap span elements around the text we have marked as variants, ideally by using a @class attribute that holds the same information as the ewit attribute
on the <rdg> element in our source texts. To generate the attribute value on @class, we used an Attribute Value Template, which you should read about
here. You can see our output at http://newtfire.org/dh/dickinson-5.html.

Housekeeping with the stylesheet template: From TEI to XHTML

Our Emily Dickinson collection is coded in the TEI namespace, which means that your XSLT stylesheet must include an instruction at the top to specify
that when it tries to match elements, it needs to match them in that TEI namespace. When you create an new XSLT document in <oXygen/> it won’t
contain that instruction by default, so whenever you are working with TEI you need to add it (See the text in blue below). To ensure that the output
would be in the XHTML namespace, we added a default namespace declaration (in purple below). To output the required DOCTYPE declaration, we
also created <xs1:output> element as the first child of our root <xsl:stylesheet> element (in green below), and we needed to include an attribute there
to omit the default XML declaration because if we output it that XML line in our XHTML output, it will not produce valid HTML with the w3C and
might produce quirky problems with rendering in various web browsers. So, our modified stylesheet template and xsl:output line is this, and you should
copy this into your stylesheet:

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
https://github.com/ebeshero/DHClass-Hub
https://github.com/ebeshero/DHClass-Hub#dhclass-hub
http://dh.obdurodon.org/modal-xslt.html
http://dh.obdurodon.org/avt.xhtml
http://dh.newtfire.org/dickinson-5.html

157

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xpath-default-namespace="http://www.tei-c.org/ns/1.0"
xmlns:math="http://www.w3.0rg/2005/xpath-functions/math"
exclude-result-prefixes="xs math"
xmlns="http://www.w3.0rg/1999/xhtml"
version="3.0">

<xsl:output method="xhtml" encoding="utf-8" doctype-system="about:legacy-compat"
omit-xml-declaration="yes" />

</xsl:stylesheet>
How to begin

Begin by forgetting about the table of contents, and concentrate on just outputting the full text of the poems. Except for having to pull the poems from a
collection of files, this is just like the XML-to-HTML transformations you have already written, and you’ll use regular template rules (without a émode
attribute) to perform the transformation.

The collection() function: Here is how we write and run XSLT to process a collection of files. Just ahead of the first template match, after the
<xsl:output method> statement, we define a variable in XSLT, which simply sets up a convenient shorthand for something complicated that we need
to use more than once, so we don’t have to keep retyping it.

<xsl:output method="xml" encoding="utf-8" indent="yes" doctype-system="about:legacy-compat"/>
<xsl:variable name="dickinsonColl" select="collection('Dickinson')"/>

An xsl:variable works by designating an éname which holds any name you like to refer to it later (we have used "dickinsonColl" here to refer to the
Dickinson collection of files), and with @select it holds anything you wish: a complicated XPath expression or a function, or whatever it is that is easier
to store or process in a variable rather than typing it out multiple times. We use variables to help keep our code easy to read! In this case, we are using a
variable to define our collection, using the collection() function in the @select attribute. The collection() function is set to designate the directory
location of the collection of poems in relation to the stylesheet I am currently writing. My XSLT is saved in the directory immediately above the
Dickinson collection, so I am simply instructing the XSLT parser to take a path-step down to it by designating Dickinson inside the collection function.
(You may wish to save your stylesheet in relation to the Dickinson collection just as I did, but in case you did not, you will simply need to figure out how
to step up or down your file directory structure to reach the Dickinson folder, using . . to climb up and / or // to step down.)

Within the stylesheet as we will see below, we will call this variable whenever we need it, to show how we are stepping into our collection of poems.
That will happen in the first template rule that matches on the root element. Open any one of the input XML files in the Dickinson collection in
<oXygen/>and you will see that the title and content of the poems are all coded within the <body> element, so we can write this stylesheet to look
through the whole collection of files and process only the elements below <body>. You call or invoke the variable name for the collection by signalling it
first with a dollar sign $, giving the variable name, and then simply step down the descendant axis straight to the <body> element in each file. Here is
how the code looks to call or invoke the variable in our first template match:

<xsl:apply-templates select="$dickinsonColl//body"/>

Note on running the transformation: Unlike other transformations we do on single XML files, when we run the XSLT in <oXygen/> it actually
doesn’t matter what file we have selected in the XML input, because we have indicated in the stylesheet itself what we are processing, with the
collection() function. We can actually set even a file that is outside of our collection as the input XML file (and we ran it successfully with the HTML
file of the previous exercise selected). You do need to enter something in the input window, but when you work with the collection() function, your
input file is just a dummy or placeholder that <oXygen/> needs to have entered so it can run your XSLT transformation.

In our HTML output (scroll down past the table of contents, to where the full text of the poems is rendered), the Poem number (and publication info in
parentheses) are inside an HTML <h2> element and the stanzas of each poem are held and spaced apart using HTML <p> elements. To make each line of
the poems start on a new line, we add an HTML empty
 ("[line] break") element at the end of each line within the stanza. If you don’t include the

 elements, the lines will all wrap together in the browser. Numbering the lines is optional for our assignment, but we have done so in our sample
output by using the count () function over the <1> elements on the preceding: : axis (which we used instead of preceding-sibling: :, because we
wanted to number lines by counting them consecutively within each file rather than within each line group. (You can read about the preceding: : axis in
the Michael Kay book on page 612.) Here’s the HTML output for one of our poems:

<h2 id="pl611">Poem 11 </h2>
<p>
He showed me Hights I never saw—

"Would'st Climb," —He said?

I said—"Not so"—

"With me—" He said—"With me"?

He showed me Secrets—Morning's Nest—

The Rope the Nights were put across—

"And now—"Would'st have me for a Guest"?

I could not find my "Yes".

ONOUSWN P

A A
Lo
Vo

\Y

9: And then, He brake His Life—And lo,

10: A Light, for me, did solemn glow,

11:
The steadier, as my face withdrew
The larger—as my face withdrew

12: And could I, further, "No"?
</p>

The fine print: Don’t worry if your HTML output isn’t wrapped the same way ours is, if it puts the empty line break elements at the beginnings of lines instead of at the ends, or if it
serializes (spells out) those empty line break elements as
</br> instead of as
. Those differences are not informational in an XML context. You can open your HTML output
in <oXygen/> and pretty-print it if you’d like, which may make it easier to read, but as long as what you’re producing is valid HTML and renders the text appropriately, you don’t have
to worry about non-informational differences between your markup and ours.

http://dh.newtfire.org/dickinson-5.html

158

More fine print: You need a line break only between lines, which is to say that you don’t need a
 element at the end of the last line of the poem because that’s the end of the
containing <p>, and not between lines. In our solution we used an <xs1:if> element to check the position of the line and output the
 only for non-final lines. If you’re feeling
ambitious, you can look up <xs1:if> at http://www.w3schools.com/xsl/xsl if.asp or by searching for xsl:if on Obdurodon’s XSI.T Advanced Features tutorial, or looking it up in
Michael Kay so you can perform this check yourself. If not, you can just output the
 element after all the concluding lines of line-groups in the poems. That’s not really
considered good HTML style, and you don’t want to do it in your own projects, but it won’t interfere with the legibility in the browser and we’ll let it pass for homework purposes.

Once your poems are all being formatted correctly in HTML, you can add the functionality to create the table of contents at the top, using modal XSLT.

Adding the table of contents

The template rule for the document node in our solution, revised to output a table of contents with all the information we wish to show before the text of
the poems, looks like the following:

<xsl:variable name="dickinsonColl" select="collection('Dickinson')"/>

<xsl:template match="/">
<html>
<head><title>Emily Dickinson’s Fascicle 16</title></head>
<body>

<hl>Emily Dickinson’s Fascicle 16</hl>
<h2>Table of Contents</h2>
<xsl:apply-templates select="$dickinsonColl//body" mode="toc"/>
<hr/>
<!--ebb: This template rule sets up my "toc" mode for the table of contents,
so that in the top part of the document we’ll output a selection of the body elements specially formatted for my Table of
and so that in another section of my document below, which I’ve put inside a <div> element, we can also output the full t
Notice how I have invoked my variable multiple times here with the $ notation: $dickinsonColl -->
<div id="main">
<xsl:apply-templates select="$dickinsonColl//body"/>

</div>
</body>

</html>
</xsl:template>

The highlighted code is what we added to include a table of contents, and the important line is <xs1:apply-templates
select="$dickinsonColl//body" mode="toc"/>. This is going to apply templates to each poem with the émode attribute value set to "toc". The value
of the émode attribute is up to you (we used "toc" for "table of contents"), but whatever you call it, setting the @mode to any value means that only
template rules that also specify a @émode with that same value will fire in response to this <xs1:apply-templates> element. Now we have to go write
those template rules!

‘What this means is that when you process the <body> elements to output the full text of the poems, you use <xsl:apply-templates> and
<xsl:template> elements without any emode attribute. To create the table of contents, though, you can have <xsl:apply-templates> and
<xsl:template> elements that select or match the same elements, but that specify a mode and apply completely different rules. A template rule for
<body> elements in table-of-contents mode will start with <xs1:template match="$dickinsonColl//body" mode="toc">, and you need to tell it to
create an <1i> element that contains the text of the <title> element and a first line, both fetched from the poem in the input XML collection of files.
The rule for those same elements not in any mode will start with <xsl:template match="$dickinsonColl//body"> (Without the @mode attribute). That
rule will create the <h2> header to hold the text of the <title> element and then output the full text of the poem in a <p>, with
 elements between
the lines. In this way, you can have two sets of rules for the poems, one for the table of contents and one to output the full text, and we use modes to
ensure that each is used only in the correct place.

Remember: both the <xs1:apply-templates>, which tells the system to process certain nodes, and the <xs1:template> that responds to that call and
does the processing must agree on their mode values. For the main output of the full text of every poem, neither the <xs1:apply-templates> nor the
<xsl:template> elements specifies a mode. To output the table of contents, both specify the same mode.

Completing and checking your work

o Before submitting your homework, you must run the transformation at home to make sure the results are what you expect them to be. Remember,
there’s a guide to running XSLT transformations inside <oXygen/> in our Intro to XSLT tutorial. If you don’t get the results you expect and can’t
figure out what you’re doing wrong, remember that you can post a query to our DHClass-Hub Issues board. You can’t just ask for the answer,
though; you need to describe what you tried, what you expected, what you got, and what you think the problem is. We often find, just as we’re
preparing to post our own queries to coding discussion boards, that having to write up a description of the problem helps us think it through and
solve it ourselves. We’re also encouraging you to discuss the homework on the discussion boards because that’s also helpful for the person who
responds. Answering someone else’s inquiry and troubleshooting someone else’s problem often helps us clarify matters for ourselves!

¢ When you complete this assignment, submit your XSLT file and your output HTML file to Courseweb, following our usual homework file-naming
conventions. You need not generate CSS for this, because we will ask you to create one for a modified version of this output in the next
assignment.

http://www.w3schools.com/xsl/xsl_if.asp
http://dh.obdurodon.org/xslt-basics-2.xhtml
http://dh.newtfire.org/explainXSLT.html
https://github.com/ebeshero/DHClass-Hub/issues

159

newtFire {dhlds}

Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last
modified: Sunday, 29-Oct-2017 00:00:13 EDT. Powered by firebellies.

XSLT Exercise 6

The input collection on our DHClass-Hub

You will be working with same digitized XML collection of Emily Dickinson’s poems that you
worked with in the last assignment, the collection we posted on our DHClass-Hub GitHub. If you
need a new copy of the files, please refer to our instructions on the previous exercise for accessing
them by syncing, cloning, and copying the directory out of your local GitHub directory. You will be
building on our XSLT Exercise 5, and you can take your stylesheet from that assignment and modify
it for this one.

Overview of the assignment

For your last assignment you used the XSLT émode attribute to create a table of contents for the
Dickinson poems in Fascicle 16, using the poem number and first line of each poem as a surrogate
for the title (since they don’t have real titles). Our output for that previous assignment is at
http://newtfire.org/dh/dickinson-5.html.

What’s a table of contents good for anyway?

In a digital edition, we can just do a full-text search and scroll in the browser, so we don’t really need
a table of contents at all. We can search for a poem by number, we can search for the text of the first
line, or we can search for a memorable phrase. But suppose we want to produce a paper edition,
where the only organized access our users will get is the organization we decide to give them. What
would be a useful table of contents or index?

A table of contents in the same order as the full text (numerical order), which is what we produced in
the last assignment, duplicates the ordering information in the plain text. How useful is that? If we
want to find a poem with a low number, we already know without a table of contents that we should
look near the beginning. On the other hand, it’s very common in published poetry collections to
include an index of first lines, sorted in alphabetical order, so that a user who remembers just the first
line of a poem can find it easily. It is a little less common to sort the order of a series of poems by an
interesting feature inside them, but since one of our interests in digitizing this collection is to study
Dickinson’s use of variants, we would also like to sort the poems by a count of the variants in each,
so that the poems with the highest number of variants come first in the sort order.

For this assignment we’re going to enhance our output from the last assignment in the following
ways:

e We’re going to create links between the items in the table of contents and the poems, so that
you can click on a poem’s identifying information and be taken immediately to the
corresponding poem.

e We’re going to produce a list of the poems organized by the total number of the variants that
Dickinson marked in them, from most variants to least variants.

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://dh.newtfire.org/XSLTExercise5.html
http://dh.newtfire.org/XSLTExercise5.html
http://dh.newtfire.org/dickinson-5.html

160

o We’re then going to alphabetize our list of first lines, so that the table of contents will be sorted
alphabetically, instead of in numerical order.

Our HTML output for this assignment is at http://newtfire.org/dh/dickinson-6.html.

The tools we need

To create links between the first lines in the table of contents and the poems in the full text section of
the page below we’re going to use attribute value templates (AVT). We have been working with
these in earlier XSLT assignments, but you may want to review Obdurodon’s page on how they are
written: http://dh.obdurodon.org/avt.xhtml.

To sort the table of contents we’re going to use <xsl:sort>.

When we sort the first lines, they won’t sort correctly for a quirky reason. We’re going to fix that
using the XPath translate() function, which we discuss below.

How HTML linking works

The <1i> items in the table of contents should include <a> ("anchor") elements, which is how HTML
identifies a clickable link. An anchor that is a clickable link has an ehref attribute, which points to
the target to which you want to move when you click on the link. For example, the table of contents
might contain the following list item for Poem 6:

Poem 6 (J 281l: 1861/1935):
1l: 'Tis so appalling—it exhilarates—
 [Variants: 4]</1i>

HTML <a> elements that have @href attributes normally appear blue and underlined in the web
browser, to advertise that they are links. The target of a link can be any element that has an eid
attribute that identifies it uniquely. (This is why you need to use a hashtag (#) in the @href on the
Table of Contents that links to an @id, because the # indicates you are pointing to the unique
identifier that follows.) If you click on this line in the browser, the window will scroll to the element
elsewhere in the document that has an @id attribute with the value "p1606". In our case, we’ve
assigned that @id attribute value to the <h2> for that poem in the main body:

<h2 id="pl606">Poem 6 </h2>

Adding links to your output

You should first review Obdurodon’s page on Attribute value templates (AVT), which describes a
strategy you can use to create a unique @id attribute for each poem. For this task we gave our poems
@id values that were a concatenation of the letter "p" and the distinct identifying number given in the
idno element in the TEI header of each poem file: "1606" for Poem 6. We attached those eid
attributes to the <h2> elements that we used as titles for each poem in the body of our page, e.g., <h2
id="p1606">. Meanwhile, in the table of contents at the top we created <a> elements with @href
attributes that point to these @id values. The value of the @href attribute must begin with a leading
"#" character, but that "#" must not be part of the value of the @id attribute to which it points. For

example,

Poem 6 (J 281: 1861/1935):
l: 'Tis so appalling—it exhilarates—
 [Variants: 4]</1li>

http://dh.newtfire.org/dickinson-6.html
http://dh.obdurodon.org/avt.xhtml
http://dh.obdurodon.org/avt.xhtml

161

means if the user clicks on the linked content in this list item, the browser will scroll to the line that
reads <h2 id="p1606"> in the main body of the page. Remember: the value of the eéhref attribute
begins with "#", but the value of the corresponding @id attribute on the <h2> element you want to
scroll to doesn'’t.

Armed with that information, you can take your answer to the main assignment and, using AVTs,
modify it to create the <a> elements with the ehref attributes and the @id attributes for the targets.

Sorting

An index of first lines in a collection of poems is usually alphabetized, because that’s how humans
look things up in that kind of list. We want to make an alphabetized list by first line, as well as sorted
list by count of the variant phrases we have marked in these poems, so we wish to do two kinds of
sorting in this assignment: one that is alphabetical and the other based on numbers derived from a
count (). To learn how to sort your table of contents before you output it, start by looking up
<xsl:sort> at https://www.w3schools.com/xml/xsl sort.asp or in Michael Kay. So far, if we’ve
wanted to output, say, our table of contents in the order in which they occur in the document, we’ve
used a self-closing empty element to select them with something like <xs1:apply-templates
select="$dickinsonColl//body"/>. We’ve also said, though, that the self-closing empty element
tag is informationally identical to writing the start and end tags separately with nothing between
them, that is, <xs1l:apply-templates select="$dickinsonColl//body></xsl:apply-
templates>. To cause the elements being processed to be sorted first, you need to use this alternative
notation, with separate start and end tags, because you need to put the <xs1:sort> element between
the start and end tags. If you use the first notation, the one with a single self-closing tag, there’s no
"between" in which to put the <xs1:sort> element. In other words, you want something like:

<xsl:apply-templates select="$dickinsonColl//body">
<xsl:sort/>
</xsl:apply-templates/>

As written, the preceding will sort the <body> elements alphabetically by their text value. As you’ll
see at the sites mentioned above, though, it’s also possible to use the @select attribute on
<xsl:sort> to sort a set of items by properties other than alphabetic order of their textual content,
which is what we will be doing in sorting on a count () of the <rdg> elements that we used to signal
variant words and phrases in Dickinson’s text.

Using translate() to fix the alphabetical sort order

If you sort the first lines alphabetically according to their textual value, there will be two errors. The
first lines of Poem 6 and Poem 9, "’Tis so appalling—it exhilarates—" and ""Twas just this time, last
year, I died.", will show up first because in the internal representation of characters in the computer,
the single straight apostrophe is "alphabetically" earlier than all of the letters. We can fix this by
using translate() to strip the apostrophe for sorting purposes, but not for rendering. That is, we can
sort as if there were no apostrophe, while still printing the apostrophe when we render the line.

We can’t easily translate away an apostrophe, though, because quotation marks have special meaning
in XPath. For the purpose of this assignment, you can ignore these two missorted lines or let the
apostrophe be sorted first. If you’re feeling ambitious, though, read Michael Kay’s answer at
http://p2p.wrox.com/xslt/50152-how-do-you-translate-apostrophe.html and see whether you can
apply it to fixing this problem.

Another Optional Challenge, for either of the table of contents or the body output, or both: You may
have observed in your HTML output that some of our titles are inconsistently formatted. Some poem

https://www.w3schools.com/xml/xsl_sort.asp
http://p2p.wrox.com/xslt/50152-how-do-you-translate-apostrophe.html

162

numbers have a period after them, and some only white space before the parenthetical information
that summarizes each poem’s publication history. You might see if you can find a way to: a) output
only the poem and its number in the part of the document where you reproduce the poems, and/or b)
remove the rogue period from the output, using the replace() function, which takes three arguments
(for "finding a needle in a haystack" and then changing or removing it): an XPath leading to a string
you want to alter (your "haystack"), a regular expression for the "needle" you want to find and
change, and whatever you wish to convert it to (including nothing, to delete it). Read about
replace() in the Strings section of The XPath functions we use the most and learn about its syntax
by looking it up in the index of the Michael Kay book.

Finishing touches

Some lists of first lines of poetry put quotation marks around the lines. We haven’t done that in our
solution, but if you’d like to add it, you should use the HTML <g> ("quoted text") element, instead of
outputting the raw quotation marks as plain text.

Oh, and did we mention CSS? Can you associate a CSS stylesheet to your output (write the CSS file
link into your XSLT) to make it look more interesting than what you get by default in a web
browser? See if you can find an interesting way to style the elements surrounding the
variants.

http://dh.obdurodon.org/functions.xhtml

163

newtFire {dhlds}

Authored by: Nicole L. Lottig (nll29 at pitt.edu), Brooke A. Stewart (bas160
at pitt.edu), and Rebecca Parker (1jp43 at pitt.edu | Twitter: @bcpkr396)
Edited and maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu)

Last modified: Sunday, 06-Aug-2017 18:16:14 EDT. Powered by firebellies.

Schematron Exercise 1

Preliminaries

Before beginning this assignment, please thoroughly read our introduction to Schematron. This
tutorial will be useful to you during this assignment and the Schematron Exercise 2. To begin this
assignment, you will need to open a new Schematron document in <oXygen/> under File = New —
New Document — (scroll to Schematron in the alphabetized list) = Schematron. Once opened,
you will keep the default xml line at the top, but you will delete everything from <sch:schema>
down. You will then replace this with:

<schema xmlns:sch="http://purl.oclc.org/dsdl/schematron” queryBinding="xslt2"
xmlns:sqgf="http://www.schematron-quickfix.com/validator/process"
xmlns="http://purl.oclc.org/dsdl/schematron">

</schema>

You will be writing your Schematron inside the <schema> root element.
Analysis of the task
Background:

For this assignment, we are looking at votes for what place the Pitt-Greensburg DH Class will go for
Spring Break. The options include: New York City, Mexico, London, and Rome. Each place gets
between 0% to 100% of the votes. Assume here that this is the final voting poll, and there are no
other options. This means that when you add the four percentages together, the result must be exactly
100%. Also assume that this is recording the already calculated percentage of the votes, not the raw
count of the votes. All of these percentages are to be integer values.

Here is a Relax NG schema for the results of the Spring Break votes:

start = results

results = element results {place+}

place = element place {name, xsd:int}

name = attribute name {"NYC" | "Mexico" | "London" | "Rome"}

Here is a sample XML document that is valid against the above schema:

<results>
<place name="NYC">34</place>
<place name="Mexico">24</place>
<place name="Rome">30</place>

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://newtfire.org/dh/explainSchematron.html
http://newtfire.org/dh/SchematronExercise2.html

164

<place name="London">12</place>
</results>

Our Relax NG schema is a little sloppy and doesn’t constrain the XML as thoroughly as it could
have been better written (as we will discuss below). It lets us set a rule that the content of the element
<place> must be a number (or xsd:int for integer), but the rule isn’t really good enough as we will
see from the from the following example:

<results>

<place name="NYC">27</place>
<place name="Mexico">39</place>
<place name="Rome">12</place>
<place name="London">15</place>
</results>

Do you see the problem? The four percentage values only total 93%! No matter how good our
coding is, it is not possible to keep this type of error from happening by using Relax NG alone. That
is why we use Schematron.

Task:

First, re-create the Relax NG schema file and the XML document by copying and pasting the blue
sample code above into files with the appropriate file extensions. Associate your newly created
Schematron and the Relax NG schema with your XML. As you write the following rules, "munge"
(aka mess up) the XML to verify your rules are firing by entering correct and incorrect values into
the XML.

1. Write a Schematron rule that verifies the four percentages always equal 100%.

2. Write a Schematron rule that fires an error when any location’s voting percentage sits outside
of the 0 to 100 range. There should be no negative integers and no integers greater than 100.
(Hint: the Relax NG schema states that these values must be integers, so you will not have to
worry about making sure of that; however, the computer parser will not recognize the values in
each <place> as integers and instead will try to process them as strings of text. Use the
number () function so the computer parses the values as numbers.)

3. Write a Schematron rule that tests there are only ever four place elements in our list of
locations to visit for Spring Break.

4. Write a Schematron rule that tests if any of the @name values are repeated. It should not be
possible for there to be any places that appear more than once in the XML. (Hint: Think about
using the count () function for this. How many different values for éname should there be?
How would you make sure each value is not repeated?

Optional Task:

Write a Schematron rule that tests whether the places are listed in order from greatest to least number
of votes. (Hint: You will need to check the numerical value of each place with their sibling place’s
numerical value. Depending on your rule context you may need to clarify the position of the
immediate sibling using the [1] position notation.)

Submission:

Upload your completed Schematron schema and your re-created XML document (with your
associated Schematron line) on Courseweb. Please follow our standard filenaming conventions for

http://dh.obdurodon.org/file-naming_conventions.xhtml

165

homework assignments uploaded to Courseweb.

http://dh.obdurodon.org/file-naming_conventions.xhtml

166

newtFire {dhlds}
Authored by: Nicole L. Lottig (nll29 at pitt.edu) and Brooke A. Stewart (bas160 at
pitt.edu) Edited and maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu)

Last modified: Sunday, 06-Aug-2017 18:16:15 EDT. Powered by firebellies.

Schematron Exercise 2

Preliminaries

To work on this assignment, you will need to to find and do the following:

o Information resources at the ready: Review our Schematron tutorial, and read more about the XPath

Functions”, Obdurodon’s “The XPath Functions We Use the Most”) or through offline searching with the
index of the Michael Kay book.

e XML file to test: Save this TEI file locally and open it in <oXygen/>: Emily Dickinson’s Fascicle 16
poems. You will need to associate your Schematron file with this document in addition to the currently
associated TEI schema lines.

¢ Open a new Schematron document in <oXygen/> by going to File = New and typing “Schematron” in the
“Type filter text” box, or by going to File = New — New Document — (scroll to Schematron in the
alphabetized list) = Schematron. Once opened, you will keep the default xml line at the top, but you will
delete everything from <sch:schema> down. To write Schematron rules for a document in the TEI
namespace, you will then replace this with:

<schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
xmlns="http://purl.oclc.org/dsdl/schematron">
<ns uri="http://www.tei-c.org/ns/1.0" prefix="tei"/>

</schema>

e Write your Schematron patterns inside the </schema> root element.

e Use the tei: prefix before each of your elements since we are working with a document in the TEIL
namespace. Remember that we do not use that prefix before attributes because attributes are in no
namespace.

Analysis of the task
The goal:

The Dickinson project team is using TEI <app> elements inside the lines of Dickinson’s poems when they need to
encode a set of variant words or phrases that appear in different publications, labeled in the <rdg> elements with
their ewit attributes. You are working with a single file representing a set of poems from a collection of
manuscripts or fascicle that Emily Dickinson bundled and bound together herself. For this assignment, you will
write Schematron to function on top of the established TEI Relax NG Schema to help ensure that the <app> and
<rdg> elements are written properly according to the rules of the team. You will need to write a few rules to make
sure that particular elements and attributes are appearing where we need them to, to make sure the poems are
appearing in the proper order in this document (Poem 1 through Poem 11), and to control for missing or additional
white spaces around our tags that might be distorting our representation of the poems.

Creating the rules step by step:

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://newtfire.org/dh/explainSchematron.html
http://www.w3schools.com/xsl/xsl_functions.asp
http://dh.obdurodon.org/functions.xhtml
http://dh.newtfire.org/DickinsonFullWithErrors.xml

167

1. Make sure each <rdg> element has no other attribute but ewit. We want to make sure that the <rdg>
element has nothing but an ewit attribute, but it must have this attribute. (The TEI schema by itself will
allow other attributes or no attributes at all on this element, but we want to make sure that our project team
only uses just this éwit attribute and not others.) Consider that we want the Schematron to tell us when
@wit is missing and decide whether you need to write an <assert> or a <report> rule for this. Our solution
uses the not () function in @test to fire if the <rdg> does not have ewit (including if it has any attribute
other than @wit).

Remember to use the tei: prefix before your element names! (Examples: tei:app and tei:rdg)

2. Make sure there are one or more <rdg> elements inside an <app> element. For this rule we want to
check that an <app> element has a count of at least one or more than one <rdg> element. Note: For every
new rule that matches in some way on the <rdg> context, you need to position it inside a new Schematron
<pattern> element because otherwise only the first rule at a given context will fire and the others will
remain passive.

168

3. Make sure all of the poems are in the correct counting order within the document. The team used
XSLT to combine eleven separate documents, each holding a single poem, into the one XML file you are
working with to hold the entire collection. However, the poems may not have transferred over in the correct
order. For example, maybe Poem 6 comes after Poem 7 instead of coming directly after Poem 5. The rule
that we will create now will help to check if the poems are in order so you can rearrange them if they are
not. For this, we need to do the following:

o First we need to look over our XML document that is holding all of the poems and find out where all
of the poem titles are located in the hierarchy. Those poem titles each hold a number (1 to 11) that
indicates where they properly sit in the sequence of the collection. We know that these <title>
elements are positioned inside the div/head of each poem. Notice that each begins with the same
pattern of text: the word "Poem" followed by a white space and a one or two-digit number.

o Think about what we need to do: We want to make sure that these poems are in the correct order,
based on the number given in their title. Is the poem titled Poem 2 immediately following the one
titled Poem 1? If we look ahead and evaluate each poem's title in relation to the one that follows it, we
only want to look at poems that are followed by another poem. (The last poem will not have a poem
following after it to compare, but it will already be worked into the test because it will be the poem
following the second-to-last poem.) Write your Schematron <rule> element and set its @context
accordingly. (Our solution sets the @context at the title position. Think about whether you want to
use the following-sibling:: or the following: : axis. Either way, you will need to compare a
number in the <title> element of a current poem to that of the first, immediately-following poem.)

o Decide whether you want to write an <assert> or <report> test that isolates the number of the poem
inside the title element at your context. Our solution uses the number () function to convert the
numeral(s) into a literal number, and then adds + 1 to test if that value equals the number of the poem
given in the next following poem div (stepping down into its title element to isolate and convert
and read its number). (Think about why we need to add + 1 here, or perhaps alternative ways you
could write this test.)

o You need to isolate just the number after the word “Poem” in the title, and to do this you need the
substring() function (which you may wish to look up in Michael Kay or w3schools to see how this
is formatted). The substring() function takes three arguments. The first argument indicates the
XPath node (so if you set your rule context at the title, you would just invoke the self::* or dot(.) as
the first argument). The second and third arguments are numbers: The second argument gives the
numerical position of the character in the whole string of text that indicates the point where you want
to start extracting your substring (so for this, count over from the start of the title to the first digit you
want). The third argument indicates how many characters you want to extract into your substring. So
the function is set up like this:

substring(XPath, character-position-number-to-start, number-of-characters-to-extract)

Note: since we have 11 poems, we are going to need to extract two characters to deal with Poem 10
and Poem 11.

o Wrap your substring() in a number () function to convert it, and now work with it as a number. Add
+ 1toit, and see if that value, (substring() + 1) equals the substring() in the title of just the
very next poem in the sequence.

o Test your rule. Our file is deliberately out of sequence, so you can expect to see errors if your rule is
firing correctly.

4. Test the values of the ewit attributes sitting on the rdg elements to be sure they are not mistyped. This
is something you are likely to need in your projects, so we direct you to our special Schematron tutorial on
testing unique identifiers, which shows you how to work with exml:ids (unique identifiers) and their
corresponding referencing attributes. Can you adapt the code in our tutorial to work with this file and its
positioning of the list of witnesses in this document?

http://www.w3schools.com/xsl/xsl_functions.asp
http://dh.newtfire.org/explainSchematronIdRefs.html

169

5. Optional Challenge: Control the white space around the <app> and <rdg> elements in a line of poetry.
As the team works on coding these poems, it is very easy for them to accidentally remove or add white
space in applying <app> and <rdg> elements. It is very easy to make two words run together by accident,
for example, by coding like this:

<1l n="1">When we stand on the tops of<app>
<rdg wit="#df16">Things—</rdg>
<rdg wit="#bm">things</rdg>
</app>
</1>

Notice that there is no space before the opening <app> tag and no space inside the opening <rdg> tag, so
when the team transformed this to view the first witness in HTML, we saw something like this:

When we stand on the tops of Things—

To deal with this, we need to recognize that sometimes we want a white space in between the main line of
text and the starting <app> element, and sometimes we do not.

o We do not want to add a space when the line of text before <app> ends with white space already,
when it has a special punctuation mark, a dash (-) or a quotation mark (squot;) designed to connect
with the text in the <rdg> element(s).

o We need to add a white space whenever the line of text before <app> ends with something other than
the three characters we described above and the rdg element inside begins with a letter (another
alphabet character).

o We might have to remove an extra white space when the line of text before <app> ends with any non-
space character followed by a space, and the <rdg> element opens with a white space.

o You may also want to test for white space at the end of an rdg element when its parent: :app is
followed by a string of text.

For our purposes, if you can write a Schematron rule that addresses even just one of the above scenarios,
that is sufficient, though we hope that if you succeed with one test, you will figure out how to write one or
two others! To control for white space, we created a pattern with a single rule set on the @context of the
tei:rdg element, because we need to look at each <rdg> element in turn to see if we have a white space
problem, and there are often multiple <rdg> elements inside each line. When we set the context to the whole
line of poetry, it might have multiple sets of <app> elements inside, and we cannot write a precise enough
rule to address the spans of text we need. To proceed, we need to understand something about mixed
content: When an element like the TEI 1 (for a line of poetry) contains a mixture of text () and other
elements, the text () node is sitting in a sibling relationship to the nested elements, so that a span of text in
a line of a Dickinson poem is sitting on the preceding-sibling:: axis in relation to the <app> element that
follows it. If you write your rule as we did, from the context of the <rdg> elements, you will need to write
your test to reach up to to the parent <app> elements and walk over to the preceding-sibling: :text()
node. We use the matches () function in our Schematron eétest because it works with regular expressions
and helps us to identify the particular conditions we are looking for. (Look up this function in one of the
sources we list in the Preliminaries section of this assignment to be sure you understand how to write it.)
Specifically, we are going to need a two-part test, and we can use the matches () function twice, joined by
the word and to see first if a) the line of text that is the first preceding-sibling of our parent <app> ends with
something in a regex character set, and b) the contents of our context <rdg> element starts with something
in a regex character set, like this:

test="matches(. . .) and matches(. . .)"
or
test="not(matches(. . .) and matches(. . .)"

or some combination of these.

Note that the matches () function takes two arguments like this: matches (Xpath-location, 'regex-
pattern'). You might be wondering why we aren’t using the functions starts-with() Or ends-with().
The answer is that these do not help us with finding regular expressions, but matches () can look for a regex
pattern wherever we need it. To designate the start of a line in regex (or the start of the text in a given
XPath node, use the regex caret, ~, at the start of the regex pattern you are hunting for, and to designate the
end of the text, use the regex dollar sign, $ at the end of your regex pattern.

170

Bonus task: You will likely have difficulty with matching on a quotation mark, because if you try to include
it literally in the character set (or even escape it), it will be interpreted as the end of the schematron attribute
and will result in a formedness error, munging your Schematron code. Consider it a bonus task on this
assignment to find a way to match on a straight quotaton mark. Hint: you will need to escape the literal
quotation mark using squot;, but you won’t be able to include it in a [] character set.

See how far you can get with this Optional Challenge Task and if you get stuck, record what you tried and
what didn’t work. Do your tests fire? You should see some white space errors in the file as we presented it,
but you should also tinker with the white space just before an <app> tag and at the start of an <rdg> element.

Submission

Upload your completed Schematron schema AND the Dickinson poems XML with your Schematron associated
to Courseweb, and follow our standard filenaming conventions for homework assignments uploaded to
Courseweb.

http://dh.newtfire.org/explainFileNames.html

171

newtFire {dhlds}
Maintained by: Elisa E. Beshero-Bondar (ebb8 at pitt.edu) Last
modified: Monday, 16-Oct-2017 20:01:37 EDT. Powered by firebellies.

Schematron Exercise 2

Meet Schematroll, the Schematron mascot! Schematroll
is a cross between a bilby and a bettong.

Preliminaries

To work on this assignment, you will need to to find and do the following:

o Information resources at the ready: Review our Schematron tutorial, and read more about
the XPath functions and syntax we describe below either on the web (see w3Schools” “XSLT,
XPath, and XQuery Functions”, Obdurodon’s ‘“The XPath Functions We Use the Most”) or
through offline searching with the index of the Michael Kay book. You also want to read our
tutorial on validating id attributes.

e XML file to test: Right-click to save this TEI file locally and open it in <oXygen/>: Sample
for Digital Mitford Site Index. You will need to associate your Schematron file with this
document in addition to the currently associated TEI schema lines.

¢ Open a new Schematron document in <oXygen/> by going to File = New and typing
“Schematron” in the “Type filter text” box, or by going to File = New — New Document —
(scroll to Schematron in the alphabetized list) = Schematron. Once opened, you will keep
the default xml line at the top, but you will delete everything from <sch:schema> down. To
write Schematron rules for a document in the TEI namespace, you will then replace this with:

<schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
xmlns:sqgf="http://www.schematron-quickfix.com/validator/process"
xmlns="http://purl.oclc.org/dsdl/schematron">
<ns uri="http://www.tei-c.org/ns/1.0" prefix="tei"/>

</schema>

e Write your Schematron patterns inside the </schema> root element.

e Important: You must use the tei: prefix before each of your elements since we are working
with a document in the TEI namespace; otherwise none of your schema rules involving
elements will fire! Remember that we do not use that prefix before attributes because attributes
are in no namespace.

Analysis of the task

The goal:

http://newtfire.org/dh/
http://newtfire.org/
http://newtfire.org/dh
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://newtfire.org/firebellies.html
http://schematron.com/
http://schematron.com/
http://members.optusnet.com.au/bilbies/About_Bilbies.htm
http://www.iucnredlist.org/details/2783/0
http://newtfire.org/dh/explainSchematron.html
https://www.w3schools.com/xml/xsl_functions.asp
http://dh.obdurodon.org/functions.xhtml
http://dh.newtfire.org/explainSchematronIdRefs.html
http://dh.newtfire.org/si-ADD-MRMsample.xml

172

The Digital Mitford project is working on a collection of prosopography data, that is, a record of
people, places, organizations, published works, and other named entities relevant to British author
Mary Russell Mitford’s world in the nineteenth century. After some years of collaborative research
the collection (which we call our "Site Index") contains thousands of entries, all contributed in
batches by members of the editing team in the course of their research. It’s common for our editors to
make typographical errors as they enter details about historical people in particular, since these
entries can be especially complicated! Your task is to write a helpful Schematron file to guide the
editors in their process, flag errors if they reverse date ranges like birth and death dates, check for
white space errors and other common problems, and check to see that the referencing of @xml:id
attributes is correct. We hope that learning these things will give you ideas for writing Schematron to
guide your own projects.

As you work on the rules below, think about how to group them logically into related pattern
elements. You can use an @id on pattern elements to help label them and organize your work. Also,
be sure to associate your Schematron file with the XML file you are testing as soon as you write your
first rule so you can test it to make sure it is working.

A little orientation

Skim through the Digital Mitford project XML you downloaded, and get a sense of how it is
organized and the way we have nested information about individuals inside each person element.
You will see that each person has an @xml:id whose value is a distinct identity marker. Inside the
person elements you will see persName elements, some of which contain nested surname, and
forename elements. You will also see elements for birth and death with attributes and contents
telling us about when and where a person was born and died. And most person elements contain a
biographical note element with more information. These notes sometimes include references (made
with eref attributes) to people, places, books, and more listed elsewehere in the site index.

Rules to write and test

173

1. We want to close up extra white spaces that our editors inevitably type at the start of their
elements. Write a Schematron rule that checks for leading white space inside the
tei:persName element in particular. (That is, raise a warning when an element starts with a
white space.) Hints:

o You may want to look up the starts-with() function, one of the family related to
contains (). If you would rather "play with matches ()", the matches () function can
handle this too, as long as you know how to write regex to find the start of a node. (Hint
for safely "playing with matches": Remember the regular expression * and $? In XPath
contexts, they refer to the start or end of an XML node, instead of the start or end of a
line of text.)

o One thing you will notice in writing these string-matching functions is that you need to
represent the haystack (in this case, each XML node you're checking), followed by the
needle (or the thing you're looking to find inside), and when that needle is a literal string
as in with starts-with() , or a regex pattern as in matches(), you need to wrap it in
quotation marks. But in the context of writing Schematron, your tests are written as the
value of the attribute etest, so they must already be inside quotation marks: a NEW set
of quotation marks inside is going to throw your computer off so it will not know how to
find the end of your attribute value: and your computer will throw a well-formedness
error if you use the same kind of quotation marks. So, we switch over to single quotation
marks when we need to use quotes inside functions like we do here:

<report test="starts-with(., ' ')">

This practice is called nesting your quotation marks, and we use it in ordinary writing,
too! In XML code and in formal editorial practice, we alternate between double and
single quotation marks to nest them in layers.

2. Let’s work on some Schematron tests for the tei:person element. We want to check the way
its @xml:id is written. In our project when a historical person is given a unique identifier, that
@xml:id value is supposed to begin with the most distinctive part of the person’s name, their
last name. Since we code the tei:surname element as a descendant of tei:person, you may
write a Schematron rule that tests whether the exm1:id starts with the contents of the TEI's
surname element. Hint: You are used to writing starts-with () and related functions so that
they look for literal strings of text or regex patterns, but you can also use these functions to
locate the contents of an element and make sure it matches up to what you see in an attribute.
To locate whatever is in an XML node (element or attribute) instead of a specific string of text,
simply do not use the quotation marks that indicate a string.

3. Sometimes our editors don’t capitalize proper names! Check that all the tei:forename,
tei:surname, and tei:placeName elements, as well as any tei:persName elements that hold
text and do not wrap around forename and surname elements start with capital letters. Hints:

o You can do that with one rule, and you can set multiple contexts using the union
operator or pipe: | to join these together. You last used the pipe when writing Relax
NG. You can use it in Schematron (and XSLT) contexts here specifically to join together
multiple context items in one rule.

o You actually DO need to "play with matches ()" this time, because you need to find a
regular expression pattern at the start of each node. The starts-with () function looks
only for literal strings, not regex patterns. (We'll repeat our Hint for safely "playing with
matches" in case you didn't read it on number 1: Remember the regular expression * and
$?7 In XPath contexts, they refer to the start or end of an XML node, instead of the start
or end of a line of text.)

174

4. Now let’s take a look at the dates coded in this file, coded in the tei:birth and tei:death
elements. All death dates need to be later than birth dates, but surprisingly, the TEI does not
have a built-in way of checking this. Write a Schematron rule to flag when the dates coded in
the @when attributes on any tei:birth and tei:death elements don’t make sense. Hints:

o We use a few different kinds of dating attributes here: @notBefore, @notafter, and
ewhen, depending on how certain we are of when a birth or death occurred. For the
purposes of this homework, it is fine to concentrate only on the @when attributes coded
on tei:birth and tei:death.

o How to test for this: Some dates are given as full ISO years (yyyy-mm-dd) and others
are only partial and those, alas, will NOT convert to a machine-readable date with
xs:date(), so we do not want to use that function here. Instead, we recommend that you
work with the tokenize () function to isolate the year as the piece that we really need to
look at, that is, the four-digit year that sits in front of the first hyphen. To reliably capture
this piece, write the tokenize () function to break the attribute values in pieces around
hyphens ("tokenize on the hyphen") and write a position predicate to grab the first of the
tokens. (Note: tokenize() is a wonderfully adaptable function! Even if the date value
lacks any hyphens and only contains a year, this will still return that year since the token
just won’t break off!)

o Remember, you are testing to see when a birth year is later than a death year, so you
need to write a test that uses comparison operators, like you did in Schematron Exercise
1.

5. For the last required task in this assignment, it is very important for our site index file that
eref attributes must begin with a leading hashtag (#), since (as we explain more fully in our
guide on "Coding with Unique Identifiers and Testing Them with Schematron"), the hashtag is
reserved for @ref attributes that point) to @xml:ids, so they do not duplicate those ids (whose
values should only ever turn up once in a project). Write Schematron rule(s) to test and flag
those errors on our @ref attributes, to help us find where these are missing their required
hashtags.

6. Optional Bonus Challenge: These last two tasks are challenging, but may be useful to adapt
in projects, so if you do not have time to write them now, you may wish to come back to them
later on. To work on these, you need to consult our guide on "Coding with Unique Identifiers
and Testing Them with Schematron". Finally, carefully following our guide, adapt the code we
provide there to write a test that checks whether the eref and eresp attribute values, following
their hashtags, actually match up to a defined exml:id in this file or in the Digital Mitford Site
Index at http://digitalmitford.org/si.xml. (Note that this rule will also ensure that these
values actually begin with a hashtag!) Following our guide, you will learn how to write a let
statement to define a variable that points to another file’s @xml:ids, and then refer to that
variable in your Schematron test. Also, it is perfectly legal in our project for there to be
multiple values on an @ref or @resp, separated by white space, just as you see in our guide, so
you should follow our lead to adapt our code there.

http://dh.newtfire.org/SchematronExercise1.html
http://dh.newtfire.org/explainSchematronIdRefs.html
http://dh.newtfire.org/explainSchematronIdRefs.html

175

7. Optional Bonus Challenge: We need a more sophisticated way than we used in number 3 to
check the way people type out full names in the persName elements. Can we test for errors like
these?

Dorothy wordsworth
or
Percy bysshe Shelley

Of course we can, by adapting the tokenize () we have been using here to break on white
space, and to test each token in turn to see if it is capitalized. You can do this by applying the
for $i in (sequence) return .. (or "for-loop" XPath feature) so we can walk through each
token in the full sequence. To see how to write the code, consult our our guide on testing
unique identifiers: Look at our let statement, defining a variable containing a sequence of
tokens, and then consider how we processed each one in turn in our assert @test.Can you
adapt that code to tokenize the parts of a name, and test to see if each part is capitalized? Write
your Schematron rule!

Submission

Upload your completed Schematron schema AND the si-Add-MRMsample.xml file with your
Schematron associated to Courseweb, and follow our standard filenaming conventions for
homework assignments uploaded to Courseweb.

http://dh.newtfire.org/explainSchematronIdRefs.html
http://dh.newtfire.org/explainFileNames.html

176

Mulberry Classes Guide to Using
the Oxygen XML Editor (v20.0)

Mulberry Technologies, Inc.

17 West Jefferson Street, Suite 207
Rockville, MD 20850

Phone: 301/315-9631

Fax: 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

Version 1.8 (March 23, 2018)
©Copyright 2015-2018 Mulberry Technologies, Inc.

Mulberry
Technologies, Inc.

http://www.mulberrytech.com

177
Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

Mulberry Classes Guide to Using the Oxygen
XML Editor (v20.0)

Exhibits
Exhibit 1: Guide to Using Oxygen XML Editor (v20.0) 1

Pagei

178

Page ii

Exhibit 1

Guide to Using Oxygen XML Editor (v20.0)

NOTE: This is areference, not a list of instructions!

Oxygen is both an XML editor and a development tool. We will be using it
to run XML transforms using XSLT, to validate documents according to a
DTD or schema, and to run Schematron, XQuery, XSLT-FO, and other pro-
cesses.

Key Oxygen Icons
check well-formedness (blue checkmark)
validate document (red checkmark)
associate schema (red push pin)
apply transformation scenario (triangle in circle)

configure transformation scenario (wrench)
XPath 2.0 search window

Open Oxygen XML Editor
* Double click the icon

Naming Files

When you create a file, it is considered best practice to name your files using
the following file extensions:

o XML filenames end in “_xml”
e XSLT filenames end in “_xsl”

e XML Schema filenames end in “_.xsd”

%Mulberry page 1
Technologies, Inc.

179

180
Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

e DTD filenames end in “_.dtd”

DTD modules (DTD fragments) end in “.ent” or *“.mod”

Schematron filenames end in “.sch”

PDF files end in *“.pdf”

HTML an XHTML files end in “.html” or “_htm”
RELAXNG files end in “.rng”

Create a New XML Document
1. First Time Opening Oxygen
 If a “Welcome to Oxygen” screen appears, under Create New
» Choose New Document
e Choose XML Document
» Then finish as explained below
* If there is no “Welcome to Oxygen” screen, on the top bar choose File
e Choose New
e Under New Document, choose XML Document
 Then finish as explained below
2. If Oxygen is Already Open
* On the top bar choose File
» Choose New
e Under New Document, choose XML Document
» Then finish as explained below
3. Finish New Document: Associate a Schema
* Click Customize
 On the fill-in line Schema URL:, click the small down arrow

e Choose Browse for local file

page 2 %Mulberry
Technologies, Inc.

181
Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

An Open window will pop up
Select the DTD, RNG, or XSD schema you want
Click Open

The Schema type and the Root element: should fill in automatically
(If the Root element: does not show the correct root element, use the
drop-down menu to scroll to the root.)

e Click Create

Outline View (See the Tree)

The Outline view shows the tree view of your document, and collapses and
expands like a word-processing outliner by clicking on the plus right-facing
triangles.

» Open your .xml document in Oxygen
» From the top line options choose Window
 Pull down to Show View

e Choose Outline

Check XML Document for Well-formedness
A well-formed XML document, follows all the syntax rules of XML
» Open your .xml document in Oxygen

* To the right of the red check mark s a tiny down-pointing arrow.
Click that arrow and then choose the Well-formedness icon
* Test results show at the very bottom of the screen:

» A green box with the words “Document is well formed” tells you that
the document is well-formed.

* A red box with words like “Wel Iformed test - failed” says there are

errors. Each error will be described in the error window below the
screen and by a red bar on the vertical status line. Clicking on the error
message or the red bar will take you to the location of the error.

%Mulberry page 3
Technologies, Inc.

182
Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

Check XML Document for Validity

* If there is a schema associated with your document, click on the Valida-

tionicon . For DTD validation, this means there is a DOCTYPE decla-
ration.

« If there is no schema associated, associate an XSD, RNG, or DTD schema
with the document as follows:

* Click the Associate Schema icon just above the document
* Click on the folder icon the right of the URL: fill-in box

* Choose Browse for local file

* An Open window will pop up

» Select the DTD, RNG, or XSD schema you want

* Click Open

 Click 0K to choose your DTD or Schema

* Click on the Validation icon
* Validation messages

» A green box on the bottom line with the words “validation success-
ful” will tell you that there were no parsing errors.

* A red box on the bottom line with words like “validation failed” will

tell you that you have errors. Each error will be described in the error
window below the screen and by a red bar on the vertical the status line.
Clicking on the error message or the red bar will take you to the loca-
tion of the error.

GO TO an Error in an XML File

Each error is described at the bottom of the screen in an error window and as
a red bar on the status bar to the right of the main window. Go directly to the
error by:

* Clicking on the error message, or
* Clicking on the red bar

page 4 %Mulberry
Technologies, Inc.

183
Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

See All of an Error Message

Each error is described at the bottom of the screen in an error window and as
a red bar on the status bar to the right of the main window. To see the full
message you may:

 Right click on the error message and choose Show message, or

e Scroll the error bar

Associate a Stylesheet (Run XSLT transform through
Oxygen)

To run a XSLT transformation (for example, to transform your XML into
HTML that you can see in a browser):

» Open your XML document in Oxygen

* First time setup —The first time you create the transform: Click on the
Configure Transformation Scenario icon [a crescent wrench with small

right-pointing red triangle]
e Click the New button near the bottom of the menu
e Then choose XML transformation with XSLT

* A New scenario window will pop up

In the Name: fill-in, give your scenario a name

* Under the XSLT tab:
 Leave the XML URL alone (${currentFileURL} names the file that you
have open)
* Inthe XSL URL box, click on the open folder and choose the ap-

propriate .xsl stylesheet file

Ignore the FO Processor tab

Under the Output tab:
e Click Prompt for file
e Click 0K

Click the button Apply associated(1)

%Mulberry page 5
Technologies, Inc.

184
Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

* You will be prompted for a file name (which will have your results in
it) and a preview of your results will show in the bottom window

* Run an existing transform — Two ways to run a transform that has al-
ready been set up:

1. For the last scenario used (where the scenario still has a check mark
next to its name):

 Click on the Apply Transformation Scenario icon [large right point-
ing red triangle]
» The previously selected scenario will run

2. For ascenario listed among Oxygen's transforms, but not previously se-
lected (no check mark next to the scenario name):

 Click on the Apply Transformation Scenario icon [large right point-
ing red triangle]

» A Transform With window will appear

» Choose the scenario you want (click on the name)

* Click Edit

 Look at the scenario to see what it is doing, then click 0K

» Add a check mark to the left of the scenario you have selected (click
in the box to the left of the name)

* Click the button Apply associated(1)

Checking Selected Aspects using Schematron

(This is one way; there are many others, including techniques for running
Schematron against many files at one time.)

» Open your XML file in Oxygen

* Click on the small gray down-arrow just to the right of the Validate Docu-
ment red check mark . Choose Validate with.

* In the Schema type tab, select Schematron.

page 6 %Mulberry
Technologies, Inc.

185
Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

» Choose the folder icon to the right of the URL box and navigate to
the file that is your Schematron schema. Double click on that filename to
choose the .sch file. Use relative paths.

* Click 0K

» Any Schematron error (E [1SO Schematron]) and warning (W [1SO Sche-
matron]) messages will appear in a window at the bottom of your screen;
otherwise, you will see a green box and “validation successful” mes-
sage.

Turn Content Completion On/OFF in Oxygen
* Select Options in the top bar
» Choose Preferences

 Scroll down to and click on Editor, then find Content Completion

» To turn Content Completion on: Select the top three items (other op-
tions will appear), select Apply, and then select 0K

» To turn Content Completion off: Deselect the top three items (other op-
tions in the pane will then also be grayed out), select Apply, and then
select OK

To Pass a Global Parameter to a Stylesheet in Oxygen

Often, we wish to pass global, externally-supplied parameters to XSLT
transformations. This can be done when setting up or editing an Oxygen
XSLT transformation.

%Mulberry page 7
Technologies, Inc.

Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

» When constructing the transformation, select the Parameters button (near
the bottom of the New Scenario window).

I}

]

MName: |exercise m—samplel

Storage: () Global Options @ Project Options

X5LT | FOQ Processor I QOutput

o ~
Mew scenario M

XML URL: XSLT-v3-Exercises/MNLM-JATS-examples/Int_]_Yoga-3099096.xml |+ [-

¥SLURL: s{currentFilelRL} v LB~

Mare about &fcurrentFileURLY ...

Use "xml-stylesheet” dedaration

Transformer: | Saxons.5.5 = o=

’ Parameters (0)]

’ Extensions (0)]

[Additional X5LT stylesheets (1)]

? [OK] [Cancel

|

L

» A Configure parameters window will appear. If supplied in the XSLT

code, the name of a parameter and its default value will be listed. (Oxygen
knows to read the global parameter values from the XSLT code.)

Configure parameters P

Type filter text x|

MName Value ¥Path
language ENGLISH' | E

Unset Delete

Abstract Language passed in as external parameter
Default value: 'ENGLISH'
System ID: file: E: ST -v3-Exerdses fexercize 10-sample, sl

? [oK] [Cancel

page 8

%Mulberry
Technologies, Inc.

186

187
Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

 To change the value of the parameter, place the cursor on the desired pa-
rameter line, select it, and click the Edit button. An Edit parameter win-

dow will appear:

Edit Parameter S
Mame: language I
vae: [ETEREN] s

[7] Evaluate as ¥Path Yiou can use editor variables, More details. ..
Description: | abstract Language passed in as external parameter
Default value: 'ENGLISH'
System ID: file: B fXSLT-v3-Exercsesjexerdse 10-sample. ksl
? [Ok] [Cancel l

A ’

* Inthe Value: pane, select the text and type the desired value over the ex-
isting value, e.g., type the new value “GERMAN” over the existing value
“ENGLISH”. (The value does NOT need quotation marks — Oxygen will
add those.) Click OK.

» The Configure parameters window will reappear and include the new de-
fault value. Click OK.

Canfigure parameters =
Type filter text
Name Value XPath
anguaoe oA “
’ Mew] [Edit] [Unset] Delete
Abstract Language passed in as external parameter
Default value: 'ENGLISH'
System ID: file:/E: X5LT-v3-Exerdses/exercise 10-sample. xsl
? [0K l ’ Cancel

%Mulberry page 9
Technologies, Inc.

188
Mulberry Classes Guide to Using the Oxygen XML Editor (v20.0)

» The Edit scenario window will reappear and indicate that one parameter
Is now being passed in from Oxygen. Click OK to exit the transformation

setup.
i T &J"

MName: |exercise 10-sam|:-IE|

Storage: () Global Options @ Project Options

¥5LT | FO Processar | Output

XML URL: [¥SLT-v3-Exerdses/MNLM-1ATS-examples/Int_1_Yoga-3099096.xml « | * -

¥SLURL: |&deurrentFilelURL} E A=

More about S{currentFileURLY ...

Use “wml-stylesheet” dedaration

Transformer: |S5axon6.5.3 - &=
[Parameters (1)]
[Extensions (0)]
[Additional XSLT styleshests (0)]
? [OK] [Cancel

page 10 %Mulberry
Technologies, Inc.

Date/Time Functions
adjust-date-to-timezone(xs:date?) as xs:date?

adjust-date-to-timezone(xs:date?,
xs:dayTimeDuration?) as xs:date?

adjust-dateTime-to-timezone(xs:dateTime?) as
xs:dateTime?

adjust-dateTime-to-timezone(xs:dateTime?,
xs:dayTimeDuration?) as xs:dateTime?

adjust-time-to-timezone(xs:time?) as xs:time?

adjust-time-to-timezone(xs:time?,
xs:dayTimeDuration?) as xs:time?

dateTime(xs:date?, xs:time?) as xs:dateTime?
day-from-date(xs:date?) as xs:integer?
day-from-dateTime(xs:dateTime?) as xs:integer?
days-from-duration(xs:duration?) as xs:integer?

hours-from-dateTime(xs:dateTime?) as
xs:integer?

hours-from-duration(xs:duration?) as xs:integer?
hours-from-time(xs:time?) as xs:integer?
implicit-timezone() as xs:dayTimeDuration

minutes-from-dateTime(xs:dateTime?) as
xs:integer?

minutes-from-duration(xs:duration?) as
xs:integer?

minutes-from-time(xs:time?) as xs:integer?
month-from-date(xs:date?) as xs:integer?

month-from-dateTime(xs:dateTime?) as
xs:integer?

months-from-duration(xs:duration?) as
xs:integer?

seconds-from-dateTime(xs:dateTime?) as
xs:decimal?

seconds-from-duration(xs:duration?) as
xs:decimal?

seconds-from-time(xs:time?) as xs:decimal?

timezone-from-date(xs:date?) as
xs:dayTimeDuration?

timezone-from-dateTime(xs:dateTime?) as
xs:dayTimeDuration?

timezone-from-time(xs:time?) as
xs:dayTimeDuration?

year-from-date(xs:date?) as xs:integer?
year-from-dateTime(xs:dateTime?) as xs:integer?
years-from-duration(xs:duration?) as xs:integer?

XSLT-Only Functions

current() as item()

current-group() as item()*
current-grouping-key() as xs:anyAtomicType?
document(item()*) as node()*
document(item()*, node()) as node()*
element-available(xs:string) as xs:boolean

format-dateTime(xs:dateTime?, xs:string,
xs:string?, xs:string?, xs:string?) as xs:string?

format-dateTime(xs:dateTime?, xs:string) as
xs:string?

format-date(xs:date?, xs:string, xs:string?,
xs:string?, xs:string?) as xs:string?

format-date(xs:date?, xs:string) as xs:string?
format-number(numeric?, xs:string) as xs:string

format-number(numeric?, xs:string, xs:string) as
xs:string

format-time(xs:time?, xs:string, xs:string?,
xs:string?, xs:string?) as xs:string?

format-time(xs:time?, xs:string) as xs:string?
function-available(xs:string) as xs:boolean

function-available(xs:string, xs:integer) as
xs:boolean

generate-id() as xs:string
generate-id(node()?) as xs:string
key(xs:string, xs:anyAtomicType*) as node()*

key(xs:string, xs:anyAtomicType*, node()) as
node()*

regex-group(xs:integer) as xs:string
system-property(xs:string) as xs:string
type-available(xs:string) as xs:boolean
unparsed-text(xs:string?) as xs:string?
unparsed-text(xs:string?, xs:string) as xs:string?
unparsed-text-available(xs:string?) as xs:boolean

unparsed-text-available(xs:string?, xs:string?) as
xs:boolean

unparsed-entity-uri(xs:string) as xs:anyURI
unparsed-entity-public-id(xs:string) as xs:string

XPath 2.0:

http://www.w3.0org/TR/xpath20/

XQuery 1.0:

http://www.w3.0org/TR/xquery/

XQuery 1.0 & XPath 2.0 Functions & Operators:
http://www.w3.0org/TR/xpath-functions/

Argument Notation

numeric Any of xs:integer, xs:decimal, xs:float
or xs:double.

* A sequence of the indicated type.
? The indicated type or empty sequence.
~ The result type varies depending on the
arguments.
XS: http://www.w3.0rg/2001/XMLSchema
2008-07-21

XQuery 1.0 &
XPath 2.0
Functions &
Operators
Quick Reference

Sam Wilmott
sam@wilmott.ca
http://www.wilmott.ca

and

Mulberry Technologies, Inc.

17 West Jefferson Street, Suite 207
Rockville, MD 20850 USA

Phone: +1 301/315-9631

Fax: +1 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

Mulberry

Technologies, Inc.

© 2007-2008 Sam Wilmott and
Mulberry Technologies, Inc.

189
Date/Time Operators

(xs:date) + (xs:dayTimeDuration) as xs:date
(xs:date) + (xs:yearMonthDuration) as xs:date

(xs:dateTime) + (xs:dayTimeDuration) as
xs:dateTime

(xs:dateTime) + (xs:yearMonthDuration) as
xs:dateTime

(xs:dayTimeDuration) + (xs:dayTimeDuration) as
xs:dayTimeDuration

(xs:time) + (xs:dayTimeDuration) as xs:time

(xs:yearMonthDuration) + (xs:yearMonthDuration)
as xs:yearMonthDuration

(xs:date) - (xs:date) as xs:dayTimeDuration
(xs:date) - (xs:dayTimeDuration) as xs:date
(xs:date) - (xs:yearMonthDuration) as xs:date

(xs:dateTime) - (xs:dateTime) as
xs:dayTimeDuration
(xs:dateTime) — (xs:dayTimeDuration) as
xs:dateTime
(xs:dateTime) — (xs:yearMonthDuration) as
xs:dateTime
(xs:dayTimeDuration) - (xs:dayTimeDuration) as
xs:dayTimeDuration
(xs:time) — (xs:dayTimeDuration) as xs:time
(xs:time) — (xs:time) as xs:dayTimeDuration
(xs:yearMonthDuration) — (xs:yearMonthDuration)
as xs:yearMonthDuration
(xs:dayTimeDuration) * (xs:double) as
xs:dayTimeDuration
(xs:yearMonthDuration) * (xs:double) as
xs:yearMonthDuration
(xs:dayTimeDuration) div (xs:dayTimeDuration) as
xs:decimal
(xs:dayTimeDuration) div (xs:double) as
xs:dayTimeDuration
(xs:yearMonthDuration) div (xs:double) as
xs:yearMonthDuration
(xs:yearMonthDuration) div
(xs:yearMonthDuration) as xs:decimal
The eq, ne, It, gt, le and ge comparisons are
suppoted for the types: xs:date and xs:time.
The eq and ne (only) comparisons are supported
for the types: xs:duration, xs:gDay,
xs:gMonth, xs:gMonthDay, xs:gYear and
xs:gYearMonth.
The It, gt, le and ge (only) comparisons are

supported for the types: xs:dayTimeDuration
and xs:yearMonthDuration.

Other Comparisons

The eq and ne (only) comparisons are supported
for the types: xs:base64Binary, xs:hexBinary,
Xxs:NOTATION and xs:QName.

http://www.w3.org/TR/xpath-functions/

Text/String Functions

codepoint-equal(xs:string?, xs:string?) as
xs:boolean?

codepoints-to-string(xs:integer*) as xs:string

compare(xs:string?, xs:string?) as xs:integer?

compare(xs:string?, xs:string?, xs:string) as
Xxs:integer?

concat(xs:anyAtomicType?, xs:anyAtomicType?,)
as xs:string

contains(xs:string?, xs:string?) as xs:boolean

contains(xs:string?, xs:string?, xs:string) as
xs:boolean

current-date() as xs:date

current-dateTime() as xs:dateTime
current-time() as xs:time

default-collation() as xs:string
encode—for-uri(xs:string?) as xs:string
ends-with(xs:string?, xs:string?) as xs:boolean

ends-with(xs:string?, xs:string?, xs:string) as
xs:boolean

escape-html-uri(xs:string?) as xs:string
lower-case(xs:string?) as xs:string
normalize-space() as xs:string
normalize-space(xs:string?) as xs:string
normalize-unicode(xs:string?) as xs:string

normalize-unicode(xs:string?, xs:string) as
Xs:string

starts-with(xs:string?, xs:string?) as xs:boolean

starts-with(xs:string?, xs:string?, xs:string) as
xs:boolean

string() as xs:string

string(item()?) as xs:string
string—join(xs:string*, xs:string) as xs:string
string-length() as xs:integer
string-length(xs:string?) as xs:integer
string-to-codepoints(xs:string?) as xs:integer*
substring(xs:string?, xs:double) as xs:string

substring(xs:string?, xs:double, xs:double) as
xs:string

substring-after(xs:string?, xs:string?) as xs:string

substring-after(xs:string?, xs:string?, xs:string) as
Xs:string

substring-before(xs:string?, xs:string?) as xs:string

substring-before(xs:string?, xs:string?, xs:string)
as xs:string

translate(xs:string?, xs:string, xs:string) as xs:string

upper-case(xs:string?) as xs:string

XSL-List:
http://www.mulberrytech.com/xsl/xsl-list

REGEX Functions

matches(xs:string?, xs:string) as xs:boolean

matches(xs:string?, xs:string, xs:string) as
xs:boolean

replace(xs:string?, xs:string, xs:string) as
Xs:string

replace(xs:string?, xs:string, xs:string, xs:string)
as xs:string

tokenize(xs:string?, xs:string) as xs:string*

tokenize(xs:string?, xs:string, xs:string) as
xs:string*

Arithmetic Operators

+ (humeric) as ~numeric
(numeric) + (numeric) as ~numeric
- (humeric) as ~numeric

(numeric) - (numeric) as ~numeric
(numeric) * (numeric) as ~numeric

(numeric) div (numeric) as ~numeric

(numeric) idiv (numeric) as xs:integer

(numeric) mod (numeric) as ~numeric
Arithmetic Functions

abs(numeric?) as ~numeric?
avg(xs:anyAtomicType*) as ~xs:anyAtomicType?
ceiling(numeric?) as ~numeric?

floor(numeric?) as ~numeric?

number() as xs:double
number(xs:anyAtomicType?) as xs:double
round(numeric?) as ~numeric?
round-half-to-even(numeric?) as ~numeric?

round-half-to—even(numeric?, xs:integer) as
~numeric?

sum(xs:anyAtomicType*) as ~xs:anyAtomicType

sum(xs:anyAtomicType*, xs:anyAtomicType?) as
~xs:anyAtomicType?

The eq, ne, It, gt, le and ge comparisons are
supported for the numeric types.

Sequence Operators

(item()*) , (item()*) as ~item()*

(node()*) union (node()*) as ~node()*
(node()*) intersect (node()*) as ~node()*
(node()*) except (node()*) as ~node()*
(xs:integer) to (xs:integer) as xs:integer*

Node Comparisons
(node() is (node()) as xs:boolean
(node()) << (node()) as xs:boolean
(node()) >> (node()) as xs:boolean

Sequence and Node Functions

collection() as node()*

collection(xs:string?) as node()*

count(item()*) as xs:integer

data(item()*) as ~xs:anyAtomicType*

deep-equal(item()*, item()*) as xs:boolean

deep-equal(item()*, item()*, string) as xs:boolean

distinct-values(xs:anyAtomicType*) as
~Xs:anyAtomicType*

distinct-values(xs:anyAtomicType*, xs:string) as
~Xs:anyAtomicType*

doc(xs:string?) as document-node()?

empty(item()*) as xs:boolean

exactly-one(item()*) as ~item()

exists(item()*) as xs:boolean

index—of(xs:_anyAtomicType*, xs:anyAtomicType)
as xs:integer*®

index-of(xs:anyAtomicType*, xs:anyAtomicType,
xs:string) as xs:integer*®

insert-before(item()*, xs:integer, item()*) as
~item()*

last() as xs:integer

nilled(node()?) as xs:boolean?

node-name(node()?) as xs:QName?

one-or-more(item()*) as ~item()+

position() as xs:integer

remove(item()*, xs:integer) as ~item()*

reverse(item()*) as ~item()*

root() as node()

root(node()?) as node()?

subsequence(item()*, xs:double) as ~item()*

subsequence(item()*, xs:double, xs:double) as
~item()*

unordered(item()*) as ~item()*

zero-or-one(item()*) as ~item()?

Miscellaneous Functions

error() as none

error(xs:QName) as none

error(xs:QName?, xs:string) as none

error(xs:QName?, xs:string, item()*) as none

lang(xs:string?) as xs:boolean

lang(xs:string?, node()) as xs:boolean

max(xs:anyAtomicType*) as ~xs:anyAtomicType?

max(xs:anyAtomicType*, string) as
~Xs:anyAtomicType?

min(xs:anyAtomicType*) as ~xs:anyAtomicType?

min(xs:anyAtomicType*, string) as
~Xs:anyAtomicType?

trace(item()*, xs:string) as ~item()*

. 190
Boolean Functions

boolean(item()*) as xs:boolean
false() as xs:boolean
not(item()*) as xs:boolean
true() as xs:boolean

The eq, ne, It, gt, le and ge comparisons are
supported for the xs:boolean type.

URI, ID and XML Name Functions

base-uri() as xs:anyURI?
base-uri(node()?) as xs:anyURI?
document-uri(node()?) as xs:anyURI?
doc-available(xs:string?) as xs:boolean
in-scope-prefixes(element()) as xs:string*
id(xs:string*) as element()*
id(xs:string*, node()) as element()*
idref(xs:string*) as node()*
idref(xs:string*, node()) as node()*
iri-to-uri(xs:string?) as xs:string
local-name() as xs:string
local-name(node()?) as xs:string

local-name-from-QName(xs:QName?) as
xs:NCName?

name() as xs:string

name(node()?) as xs:string
namespace-uri() as xs:anyURI
namespace-uri(node()?) as xs:anyURI

namespace-uri-for-prefix(xs:string?, element())
as xs:anyURI?

namespace-uri-from-QName(xs:QName?) as
xs:anyURI?

prefix-from-QName(xs:QName?) as xs:NCName?
QName(xs:string?, xs:string) as xs:QName

resolve-QName(xs:string?, element()) as
xs:QName?

resolve-uri(xs:string?) as xs:anyURI?
resolve-uri(xs:string?, xs:string) as xs:anyURI?
static—base-uri() as xs:anyURI?

Built-In Schema Types

These types are available in all implementations.

xs:anyAtomicType xs:gMonth
xs:anySimpleType xs:anyURI
Xxs:anyType xs:gMonthDay
xs:base64Binary xs:gYear
xs:boolean xs:gYearMonth
xs:date xs:hexBinary
xs:dateTime xs:integer
xs:dayTimeDuration xs:QName
xs:decimal xs:string
xs:double xs:time
xs:duration xs:untyped
xs:float xs:untypedAtomic
xs:gDay xs:yearMonthDuration

http://www.mulberrytech.com/xsl/xsl-list

Escaplng Characters

Characters that have special meaning in regular
expressions need to be escaped if they are to be
represented “as is”. These characters are:

Vil o2+ () Pl - A8

In addition, the following escapes represent
single characters:

\n newline or line-feed character (
)
\r carriage return character ()
\t tab character ()

Multi-Character Escapes
(dot) Any Non-Line-End Character

\s Any Space Character

\i Any Initial Name Character
(including ‘_’ and ")

\c Any Name Character
(including *.’, *-*, *_” and *?’)

\d Any Decimal Digit
\w Any “Word” Character (anything other
than Punctuation, Separator or “Other”)

An upper-case multi-character escape matches
any character not described by the lower-case
escape. The upper-case escapes are:

\S \l \C \D \W

Character Class Expressions

A character class expression matches a single
character. It’s wrapped in square brackets and
consists of three parts:

1. an optional negation indicator, A.

2. one or more characters or ranges, and

3. an optional character class subtraction.
If the negation indicator is used, the single

character matched is any character not given
following it or in a given range.

A character range consists of two characters
separated by a dash, as in:
[-a-zA-Z0-9_]
A leading dash (-) is a dash, not a range.
A character class subtraction consists of a dash

followed by a character, category escape or
nested character class expression, as in:

[a-z-[aeiou]]

i.e. Match lower-case letters but not the vowels.

XPath 2.0 and XQuery 1.0 Functions
That Use Regular Expressions

matches(xs:string?, xs:string) as xs:boolean

matches(xs:string?, xs:string, xs:string) as
xs:boolean

replace(xs:string?, xs:string, xs:string) as
Xs:string

replace(xs:string?, xs:string, xs:string, xs:string)
as xs:string

tokenize(xs:string?, xs:string) as xs:string*

tokenize(xs:string?, xs:string, xs:string) as
Xs:string*

XSLT 2.0 Instructions That Use
Regular Expressions

<xsl:analyze-string select = expression

regex = { string }
flags = { string }>

<xsl:matching-substring>
sequence-constructor
</xsl:matching-substring>

<xsl:non-matching-substring>
sequence-constructor
</xsl:non-matching-substring>

xsl:fallback*

</xsl:analyze-string>

One but not both of xsl:matching-substring and
xsl:non-matching-substring can be omitted.

Inside xsl:matching-substring, the
regex-group(N) function returns the Nth group
captured by the regular expression.

Regular Expression Matching Flags

Flags are letters used to indicate how Regular
Expression matching is to be done:

s Dot (.) matches any character, line-end
characters included.

m A and $ match at the start and end of all
lines, not just the start and end of the
selected string as a whole.

i Match case insensitive.

X Remove white-space (space, tab and line-
end) characters from the regular expression
before using it.

Zero or more flags are specified as a string using
the optional flags= attribute of xsl:analyze-string
or the optional last argument of the matches,
replace and tokenize functions.

2008-07-21

Regular Expressions
in XSLT 2.0,

XQuery 1.0 and
XPath 2.0

Sam Wilmott
sam@wilmott.ca
http://www.wilmott.ca

and

Mulberry Technologies, Inc.

17 West Jefferson Street, Suite 207
Rockville, MD 20850 USA

Phone: +1 301/315-9631

Fax: +1 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

Mulberry
Technologies, Inc.

© 2007-2008 Sam Wilmott and
Mulberry Technologies, Inc.

. . 191
Regular Expression Basics

A regular expression is:

oneThing | anotherThing | yetAnother
Match one thing or another or another (one or
more things).

oneThing anotherThing yetAnother
Match one thing followed by another etc. (one
or more things)

atom quantifier
Match atom the number of times indicated by
quantifier; once if quantifier is omitted.

Where atom is any of:
e an unescaped character,
e an escaped character,
e a parenthesized regular expression, or
e a character class expression.

Where quantifier is any of:

? zero or one times (i.e. optional)
* zero or more times

+ one or more times

{N} exactly N times

{N,} N or more times

{N,M} between N and M times inclusive.

An extra trailing ?, as in ??, +? or {N,M}? means
match the shortest possible number of
repetitions rather than the (default) longest.

Line Starts and Ends

A regular expression can be anchored at the start
and/or end of a string using A (the start) and $
(the end). If a regular expression is used with
the m flag, A and $ match at the start and end of
each line.

In the absence of A or §, a regular expression
matches unanchored: anywhere within the string.

Subexpressions and Back References

Each parenthesized group in a regular expression
is assigned a group number counting unescaped
left parentheses starting from the left.

Group numbers can be used in three ways:

1. Within a regular expression, to match what
was matched by a previous subexpression. A
previously matched group is identified by
backslash and a number: \1, \2 etc.

2. Within a replace replacement expression to
match what was matched by a previous
subexpression. A group is identified by a
numeric name: $1, $2 etc. As well, $0
identifies the whole matched substring.

3. within a XSLT regex-group(N) to access the
matched subexpression.

Category Escapes

A category escape matches a character from a set
specified by a property or using a block:

\p indicates match any character in the set.

\P indicates match any character not in the set.

Categories and Properties
Any character can be matched by its properties
using a category escape consisting of a Category
code followed by an optional Property code:
\p{L} Any Letter
\p{Lu} Any Upper-case Letter
\pfLI} Any Lower-case Letter
\piLt} Any Title-case Letter
\p{Lm} Any Letter Modifier
\p{Lo} Any “Other” Letter
\p{M} Any Mark
\p{Mn} Any Non-Spacing Mark
\p{Mc} Any Combining Mark
\p{Me} Any Enclosing Mark
\p{N} Any Digit
\p{Nd} Any Decimal Digit
\p{NI} Any Letter Digit
\p{No} Any “Other” Digit
\p{P} Any Punctuation Character
\p{Pc} Any Connector Character
\p{Pd} Any Dash Character
\p{Ps} Any Open Character
\p{Pe} Any Close Character
\p{Pi} Any Initial Quote Character
\p{Pf} Any Final Quote Character
\p{Po} Any “Other” Punctuation
\pi{Z} Any Separator Character
\p{Zs} Any Space Separator
\p{zZl} Any Line Separator
\pi{Zp} Any Paragraph Separator
\p{S} Any Symbol Character
\p{Sm} Any Math Symbol
\p{Sc} Any Currency Symbol
\p{Sk} Any Modifier Symbol
\p{So} Any “Other” Symbol
\p{C} Any “Other” Character
\p{Cc} Any Control Character
\p{Cf} Any Format Character
\p{Co} Any Private Use Character
\p{Cn} Any “Not Assigned” Character

Character Blocks

Any character within a Unicode character block
can be matched using a category escape

consisting of “Is” followed by the block’s name.

For example: \p{lsBasicLatin}

Block Block Block
Start End Name

0000 007F BasicLatin

0080 OOFF Latin-1Supplement

0100 O017F LatinExtended-A

0180 024F LatinExtended-B

0250 02AF IPAExtensions

02B0O O2FF SpacingModifierLetters

0300 036F CombiningDiacriticalMarks

0370 O3FF Greek

0400 O4FF Cyrillic

0530 O58F Armenian

0590 OSFF Hebrew

0600 O6FF Arabic

0700 074F Syriac

0780 O7BF Thaana

0900 097F Devanagari

0980 O09FF Bengali

0AO0 OAYF Gurmukhi

0A80 OAFF Gujarati

OBOO OB7F Oriya

0B80 OBFF Tamil

0CO0 OC7F Telugu

0C80 OCFF Kannada

0DO0 OD7F Malayalam

0D80 ODFF Sinhala

OEOO OE7F Thai

OE80 OEFF Lao

OFO0 OFFF Tibetan

1000 109F Myanmar

10A0 10FF Georgian

1100 11FF HanguljJamo

1200 137F Ethiopic

13A0 13FF Cherokee

1400 167F
UnifiedCanadianAboriginalSyllabics

1680 169F Ogham

16A0 16FF Runic

1780 17FF Khmer

1800 18AF Mongolian

1E00 1EFF LatinExtendedAdditional

1FO0 1FFF GreekExtended

2000 206F GeneralPunctuation

2070 209F SuperscriptsandSubscripts

20A0 20CF CurrencySymbols

20D0 20FF CombiningMarksforSymbols

2100 214F LetterlikeSymbols

2150 218F NumberForms

Block Block Block

Start End Name

2190 21FF Arrows

2200 22FF MathematicalOperators

2300 23FF MiscellaneousTechnical

2400 243F ControlPictures

2440 245F OpticalCharacterRecognition

2460 24FF EnclosedAlphanumerics

2500 257F BoxDrawing

2580 259F BlockElements

25A0 25FF GeometricShapes

2600 26FF MiscellaneousSymbols

2700 27BF Dingbats

2800 28FF BraillePatterns

2E80 2EFF CJKRadicalsSupplement

2F00 2FDF KangxiRadicals

2FFO 2FFF
IdeographicDescriptionCharacters

3000 303F CJKSymbolsandPunctuation

3040 309F Hiragana

30A0 30FF Katakana

3100 312F Bopomofo

3130 318F HangulCompatibilityJamo

3190 319F Kanbun

31A0 31BF BopomofoExtended

3200 32FF EnclosedCJKLettersandMonths

3300 33FF CJKCompatibility

3400 4DB5
CJKUnifiedldeographsExtensionA

4E00 9FFF CJKUnifiedldeographs

AO00 A48F YiSyllables

A490 A4CF YiRadicals

AC0O0 D7A3 HangulSyllables

EO00 F8FF PrivateUse

F900 FAFF CJKCompeatibilityldeographs

FBOO FB4F AlphabeticPresentationForms

FB50 FDFF ArabicPresentationForms-A

FE20 FE2F CombiningHalfMarks

FE30 FE4F CJKCompatibilityForms

FE50 FEG6F SmallFormVariants

FE70 FEFE ArabicPresentationForms-B

FEFF FEFF Specials

FFOO FFEF HalfwidthandFullwidthForms

FFFO FFFD Specials

XSLT 2.0:

http://www.w3.0org/TR/xslt20/

XQuery 1.0:

http://www.w3.0org/TR/xquery/

XPath 2.0:

http://www.w3.0org/TR/xpath20/

Unicode:

http://www.unicode.org

192
Regular Expression Examp?es

A[A-Za-Z]
An Ascii letter at the start of a string or line.
A\pfLu}
An upper-case Unicode letter at the start of a
string or line.
\.$
A period at the end of a string or line.
\p{lsGreek}+
One or more Greek letters.
\p{lsGreek}{1,}
One or more Greek letters.
*-

Up to and including the next semicolon.

Up to and including the last semicolon.
A\c+$
Match only if the string consists entirely of
XML name characters.
[-~-[\[\+
Any Ascii printable character except the
square brackets.
\w+
A "word".
[A\s]+
Non-white-space characters.
\S+
Non-white-space characters.
" DE*I\
A string delimited by single or double quotes.
$2 or regex-group(2) will return the unquoted
substring. (\1 is the quote character used.)
\s*(\INC*)\s*=\s*(["(.*?)\2
An XML-attribute-like name, equal and
quoted value (with optional leading and
intervening white space). $1 is the name and
$3 is the value.
\((\d+[\p{L}+)\)
A parenthesized sequence either of digits or
of letters (but not a mixture of both).
\p{Sci\d+(\.\d*)?|\.\d+)
A decimal number with a leading currency
symbol.

Schematron 1.5

Schamatron 1.5 differs from ISO Schmatron in the
following ways:

Overall:

¢ The namespace for Schematron 1.5 is:
"http:/www.ascc.net/xml/schematron”

¢ <let> and <include> elements are not
supported.

¢ <key> element is supported:

<key name="NAME" path="PATH"
icon="URI"/>

<key> is allowed anywhere in the content of
<rule>. (In ISO Schematrons implementations
supporting the use of XSLT "foreign" elements,
<xsl:key> can be used in place of Schematron
1.5's <key>.)

¢ Abstract <pattern>s are not supported.

¢ Attribute pattern/@name used to name
<pattern>s rather than @id. It's a required
attribute.

Unsupported Attributes:

¢ These attributes are not supported anywhere:
@xml:space, @flag.

¢ These attributes are not supported on <rule>:
@see, @xml:lang, @icon, @fpi, @subject.

¢ These attributes are not supported on
<diagnostics>: @see, @fpi.

¢ In addition, attribute @see is not supported on
<schema>, <assert> or <report>.
Other Differences:

¢ <value-of> isn’t allowed as a child of
<assert> or <report>.

¢ Attribute @version is allowed on <schema>.
(Default value is "1.5".)

¢ The following attributes are optional: ns/@uri,
dir/@value and span/@class.

Schematron 1.6

Schematron 1.6 differs from Schematron 1.5 in
supporting most ISO Schematron features,
including <let>, <include>, abstract <pattern>s
and <value-of> in <assert> and <report>.

Schematron Validation
Report Language

The Schematron Validation Report Language is
the standard for the output of an ISO Schematron
processor. It can be post-processed to produce
more readable output, if required.

<schematron-output title="TEXT"

phase="NMTOKEN" schemaVersion="TEXT"
xmlns="http://purl.oclc.org/dsdl/svrl">

<text>*, <ns-prefix-in-attribute-values>*,
(<active-pattern>, (<fired-rule>,

(<failed-assert> |
<successful-report>)*)+)+
</schematron-output>

<ns-prefix-in-attribute-values
prefix="NMTOKEN" uri="URI"/>

Only namespaces from <ns> need to be
reported.

<active-pattern id="ID" name="TEXT"
role="NMTOKEN"/>

Only active <pattern>s are reported.

<fired-rule id="ID" context="TEXT"
role="NMTOKEN" flag="NMTOKEN"/>

Only <rule>s that are fired are reported.

<diagnostic-reference

diagnostic="NMTOKEN">
<text>
</diagnostic-reference>

Only references are reported, not the
<diagnostic>.

<failed-assert id="ID" location="TEXT"
test="TEXT" role="NMTOKEN"
flag="NMTOKEN">
<diagnostic-reference>*, <text>
</failed-assert>

Only failed <assert>s are reported.

<successful-report id="ID" location="TEXT"
test="TEXT" role="NMTOKEN"
flag="NMTOKEN">
<diagnostic-reference>*, <text>
</successful-report>

Only successful <report>s are reported.

<text>
text
</text>

Schematron 1.5/1.6 Resources:
http://xml.ascc.net/schematron/

See other Quick References for at:
http://www.mulberrytech.com/quickref

2012-03-05

ISO Schematron
Quick Reference

Sam Wilmott
sam@wilmott.ca
http://www.wilmott.ca

and

Mulberry Technologies, Inc.
17 West Jefferson Street, Suite 207
Rockville, MD 20850 USA

Phone: +1 301/315-9631

Fax: +1 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

Mulberry
Technologies, Inc.

© 2009-2012 Sam Wilmott and
Mulberry Technologies, Inc.

ISO Schematron ExampPés

Checking a document for good
practice:

<schema xmlns=
"http://purl.oclc.org/dsdl/schematron”
queryBinding="xslt2">
<pattern>
<title>Check paragraphs and titles for
content</title>
<rule context="title">
<report test="*">A title can only contain
text.</report>
<assert test="normalize-space()">A title
must have content.</assert>
</rule>
<rule context="p">
<assert test="* or normalize-space()">A
p must have content.</assert>
</rule>
</pattern>
<pattern>
<title>Report use of HTML formatting
elements. < /title>
<rule context="b | i">
<report test="true()">HTML <name/>
elements shouldn't be used (found
in<name path=".."/>).</report>
</rule>
</pattern>
<pattern>
<title>Check that titles precede
something.</title>
<rule context="title">
<assert test=
"following-sibling::*[1][not(self::title)]"
>A title should be followed by a
non-title element.</assert>
</rule>
</pattern>
</schema>

ISO Schematron:

Go to:
http://www.iso.org/PubliclyAvailableStandards
and search for "Schematron”.

Other Schematron resources:
http://www.schematron.com

Top-Level Schema

This Quick Reference primarily describes ISO
Schematron. See the “Difference” panel for
Schamatron 1.5 and 1.6.

<schema id="ID" icon="URI" see="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}
schemaVersion="VERSION"
defaultPhase="IDREF"
queryBinding="BINDING-NAME"
xmlns=
"http://purl.oclc.org/dsdl/schematron”>
<title>?, <ns>*, <p>*, <let>*, <phase>*,
<pattern>+, <p>%*, <diagnostics>?, plus
interspersed <include>
</schema>

<ns prefix="NMTOKEN" uri="URI"/>

All namespaces used in validated documents, and
referenced in the schema, must be declared using
<ns>.

<let name="NAME" value="VALUE"/>

<include href="URI"/>

Patterns

<pattern abstract="false" id="ID"
icon="URI" see="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}>
<p>*, <let>*, <rule>*, plus interspersed
<include>
</pattern>

Within each pattern, only the first non-abstract
<rule> whose @context matches is used.

Abstract patterns

<pattern abstract="true" id="ID"
icon="URI" see="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}>
<p>*, <let>*, <rule>*, plus interspersed
<include>
</pattern>

Using abstract patterns

<pattern abstract="false" is—a="IDREF" id="ID"
icon="URI" see="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}>
<p>*, <param>*, and interspersed <include>
</pattern>

<param name="NCNAME" value="VALUE"/>
@value must be non-empty-string

Phases

<phase id="ID" icon="URI" see="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}>
<p>*, <let>*, <active>*, plus interspersed
<include>
</phase>

<active pattern="IDREF">
any number of text, <dir>, <emph> and

</active>

Rules, Assertions and Reports

<rule flag="NAME” abstract="false"?

context="PATH” id="ID" icon="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}
see="URI" role="ROLE" subject="PATH">

any number of <let>, followed by any number
(at least one) of <assert>, <report> and
<extends>, plus interspersed <include>

</rule>

<extends rule="IDREF"/>
plus any foreign attributes

<assert test="EXPR" flag="NAME” id="ID"

diagnostics="IDREFS" icon="URI" see="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}
role="ROLE" subject="PATH">

any number of text, <name>, <value-of>,
<emph>, <dir> and

</assert>

<report test="EXPR" flag="NAME” id="ID"

diagnostics="IDREFS" icon="URI" see="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}
role="ROLE" subject="PATH">

any number of text, <name>, <value-of>,
<emph>, <dir> and

</report>

Abstract rules (used to <extends> others)

<rule flag="NAME” abstract="true"

id="ID" icon="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}
see="URI" role="ROLE" subject="PATH">

any number of <let>, followed by any number
(at least one) of <assert>, <report> and
<extends>, plus interspersed <include>

</rule>

Diagnostics

<diagnostics>
any number of <diagnostic> and <include>
</diagnostics>

<diagnostic id="ID" icon="URI" see="URI"
fpi="FORMAL-PUBLIC-ID” xml:lang="LANG"
xml:space={"preserve" | "default"}>
any number of text, <value-of>, <emph>,
<dir> and
</diagnostic>

Formatting Output

<title>
any number of <dir> and text
</title>

<p id="ID" class="CLASS" icon="URI">
any number of text, <dir>, <emph> and

</p>

<dir value={"Itr" | "rtI"}>
text
</dir>

<emph>
text
</emph>

text

<value-of select="PATH"/>
<name path="PATH"/>

If @path not specified, <name> returns the
name of the current node.

Attribute Specification Options

{ } alternate allowed values
bold = required attribute
non-bold = optional attribute

XSL-List:
http://www.mulberrytech.com/xsl/xsl-list

W3C XSLT 1.0 Specification:
http://www.w3.0org/TR/xslt

W3C XPath 1.0 Specification:
http://www.w3.0org/TR/xpath

W3C XSLT 2.0 Specification:
http://www.w3.0org/TR/xslt20

W3C XPath 2.0 Specification:
http://www.w3.org/TR/xpath20

Which Patterns Are Uséy?

All non-abstract <pattern>s are used if:
¢ there’s no <phase> in the <schema>,

¢ there’s no <phase> selected by its @id
attribute, or

¢ the <schema> is invoked with the #ALL option.

If there’s a @defaultPhase, and the <schema>
is invoked with the #DEFAULT option, then all
<pattern>s referenced in the <active> children
of the default <phase> are used.

If the implementation selects a <phase> using its
@id attribute, then all <pattern>s referenced in
the <active> children of that <phase> are used.

How #ALL, #DEFAULT and named phases are
specified is implementation-determined.

More About Attributes

@abstract indicates whether a <pattern> or
<rule> is to be used as-is (if “false”) or by
another <pattern> or <rule> (if “true”).

@defaultPhase (on <schema>) indicates which
<phase> is used to determine which <pattern>s
are selected by the #DEFAULT option.

@flag on a fired <rule>, on a failing <assert> or
on a succeeding <report> sets a flag for further
processing.

@fpi is a public identifier associated with the
element it appears on.

@icon is the URI of the location of a graphic.

@queryBinding (on <schema>) indicates which
query language is to be used. The default is
“xslt” — for XSLT/XPath 1.0. Other appropriate
values are: “stx”, “xslt1.1”, “exslt”, “xslt2”,
“xpath”, “xpath2”, “xquery”.

@role is a name classifying the <rule>, <assert>
or <report>, or the @subject, if any.

@see is the URI of information about the schema
itself.

@subject is a path describing related elements
and/or attributes, if other than the context of the
current <rule>.

Foreign Elements and Attributes

Schema elements can have “foreign” attributes,
and non-empty schema elements can contain
“foreign” child elements. Foreign attributes and
elements are those in a namespace other than
"http://purl.oclc.org/dsdl/schematron”.

Relative Location Paths

Relative Location Paths traverse the document
from the context node

para
para element children
Also - child::para

@type
the type attribute
Also - attribute::type

../title
the title element children of the parent

* axcept title
child elements except title elements
Also - *[not(self::title)] (works in XPath 1.0)

ancestor::sec
all sec ancestor elements

ancestor::sec/@n
all n attributes on sec ancestor elements

list/(item | step)
item and step element children of list
children, in document order

list/item, list/step
item element children of list children followed
by step children of list children

preceding-sibling::step
all preceding sibling step elements

preceding-sibling::*[1][self::step]
the directly preceding sibling element, if it is a
step (otherwise nothing)

descendant::div[last(]
the last div descendant of the current node

./ /div[last()]
div descendants that are the last child div of
each of their parents

preceding::pb[1]
the first (most immediate) preceding pb

ancestor::sec//pb intersect preceding::pb
pb elements inside the same sec element as
the context node, preceding it

plnormalize-space()]
p child elements that have a non-whitespace
value (text content)

*[not(node()]
empty element children (i.e., element children
with no node children)

*[not(node() except (comment()|
processing-instruction())]
element children that are empty (have no
children) except for comments or processing
instructions

step[position() gt 1]
all step element children but the first

step except *[1]
step element children but the first

step[position() le 4]
the first four step element children
Also - step[position() = (1 to 4)]

step[position() mod 2]
odd-numbered step children

step[not(position() mod 2)]
even-numbered step children

*[position() le 4] intersect step
from the first four element children, the step
children

ancestor-or-self::*[exists(@lang)][1]/@lang
the closest lang attribute on the context node
or an ancestor element

Expressions that are not Location Paths

(@class,'none")[1]
the class attribute, or if it does not exist, the
string "none".
Also -
if (exists(@class)) then @class else "none"

//*/name()

the names of all elements, in document order

distinct-values(//*/name()
the names of all elements, in document order,
with duplicates removed

//name/string-join((first, last)," ")
a sequence of strings constructed from the
name elements in the document, each one
concatenating the values of its first and last
element children, in that order, joining them
with spaces
Also - for $n in //name return

string-join(($n/first,$n/last),")

//*/count(ancestor-or-self::*)
a sequence of numbers representing the
depth of each element in the document

max(//*/count(ancestor-or-self::*))
the maximum depth of all elements in the
document (a humber in a singleton sequence)

for $stooge in (‘Moe','Larry','Curly")
returncount(//p[contains(.,$stooge)])
the counts of all p elements in the document

mentioning each of "Moe", "Larry" and "Curly",
in that order

index-of(('Moe','Larry’,'Curly"), speaker[1])
if the first speaker element child has the value
"Moe", then T1; if "Larry", then 2; if "Curly",
then 3; otherwise the empty sequence (i.e., no
value)

(: You’ve got to be kidding me. :)
do nothing. A comment is just a comment.

2008-07-21

XPath 2.0
Quick Reference

See also the “XQuery 1.0 & XPath
2.0 Functions & Operators Quick
Reference”

Sam Wilmott
sam@wilmott.ca
http://www.wilmott.ca

and

Mulberry Technologies, Inc.

17 West Jefferson Street, Suite 207
Rockville, MD 20850 USA

Phone: +1 301/315-9631

Fax: +1 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

Mulberry
Technologies, Inc.

© 2007-2008 Sam Wilmott and
Mulberry Technologies, Inc.

. 195
Absolute Location Paths

Absolute Location Paths traverse the document
starting at the top (the root), and can be
recognized by their initial / (forwardslash).

/book/bookinfo/abstract
an abstract element child of a bookinfo child
of the book document element
Also -
/child::book/child::bookinfo/child::abstract

//para
all para elements in the document
Also - /descendant-or-self::*/child::para
Also - /descendant::para

/descendant::para[1]
the first para element in the document
Also - (//para)[1]

//@order-by
all order-by attributes in the document

/ /list[exists(ancestor::list)]
all list elements that have ancestor
listelements

//list[not(ancestor::list)]
all list elements that do not have ancestor list
elements
Also - //list[not(exists(ancestor::list))]
Also - //listfempty(ancestor::list)]

//(* except title)
all elements except title elements
Also - //*[not(self::title)] (works in XPath 1.0)

//processing-instruction()[not(ancestor::sec/@n = 1)]
all processing instructions with no sec ancestor
elements with n attributes equal to 1

//para[matches(.,"[X|x]{3})]
all para elements whose value includes the
regular expression [X|x]{3}
Tip - [X|x]{3} matches three X or xcharacters
appearing in a row

//sec[@id = //@rid/tokenize(.,"\s+")]
all sec elements with id attributes whose
values are also given as a value by a
tokenized rid attribute anywhere in the
document
Also - //sec[@id = $rid-values] where
$rid-values is
distinct-values(//@rid/tokenize(.,"\s+"))
Tip — use
distinct-values(//@rid/tokenize(.,'\s+")) to
remove duplicates from the list of tokenized
@rid values
Tip - the regular expression \s+ matches any
contiguous sequence of spaces (space,
linefeed or tab characters)

Simple Expressions

$VarName
(Expr)
0O

(one dot: self)
QName (Expr, ...)
QName ()
IntegerLiteral
DecimallLiteral
DoubleLiteral
StringLiteral

Arithmetic Expressions

+ Expr Expr + Expr

- Expr Expr - Expr
Expr * Expr Expr div Expr
Expr idiv Expr Expr mod Expr

Creating Sequences

Create a sequence from a list of items:
Expr, ...

Note: A sequence list must usually be parenthesized.

Repeat over one or more sequences, returning a
sequence of results:

for VariableBinding , ... return Expr

where a VariableBinding is:
$VarName in Expr

Create a numeric sequences, from lower bound to
upper bound:

Expr to Expr

All the items appearing in either sequence:
Expr union Expr
Expr | Expr

Only items appearing in both sequences:
Expr intersect Expr

All items in the first sequence not in second:
Expr except Expr

Comments in XPath Expressions

(: This is a comment within an XPath expr :)

Testing

Test if the condition is satisfied for at least one
combination of the bound expressions:

some VariableBinding , ... satisfies Expr

Test if the condition is satisfied for all of the
bound expressions:

every VariableBinding , ... satisfies Expr

Select one or the other of two possibiliites:
if (Expr) then Expr else Expr
Either or both of two tests:
Expr or Expr Expr and Expr
Test if they are the same node:
Expr is Expr
Test if a node appears before or after another:
Expr << Expr Expr >> Expr
Test an expression’s dynamic type:

Expr instance of SequenceType

Test if an expression can be converted to a type:
Expr castable as AtomicType
Expr castable as AtomicType?

Compare two atomic values:

Expr eq Expr Expr ne Expr
Expr It Expr Expr le Expr
Expr gt Expr Expr ge Expr

Compare all items in one sequence to all items in

a second, and return if true for any pair of values:

Expr = Expr Expr = Expr
Expr < Expr Expr <= Expr
Expr > Expr Expr >= Expr

Type Modification Expressions
Use as without converting:
Expr treat as SequenceType

Use as, converting as needed and doable:
Expr cast as AtomicType
Expr cast as AtomicType?

XPath 2.0:
http://www.w3.org/TR/xpath20/

XSL-List:
http://www.mulberrytech.com/xsl/xsl-list

Path Expressions

/ Top level, document root

/ Step At top level

Step Relative to current node

// Step Anywhere within document
Path / Step Immediately within Path

Path // Step Anywhere within Path

Where a Step is one of:
Expr
AxisName::NameTest
AxisName::KindTest
@NameTest (attribute test)
NameTest (child element test)
KindTest (child node test)

(two dots: parent test)

Followed by zero or more predicates:

[Expr]
Where an AxisName is one of:
ancestor ancestor-or-self
attribute child
descendant descendant-or-self
following following-sibling
namespace parent
preceding preceding-sibling
self
Where a NameTest is one of:
QName
%*
NCName:*
*:NCName

Where a KindTest is one of:
attribute (AttributeName)
attribute (AttributeName , TypeName)
attribute (*)
attribute (*, TypeName)
attribute ()
comment ()
document-node (element ...)
document-node (schema-element ...)
document-node ()
element (ElementName)
element (ElementName , TypeName)
element (*)
element (*, TypeName)
element ()

node () 196
processing-instruction (NCName)
processing-instruction (StringLiteral)
processing-instruction ()
schema-attribute (AttributeName)
schema-element (ElementName)
text ()

Names and Types
XML QNames, with or without a colon-separated
prefix, is use for all of:

VarName

AttributeName

ElementName

TypeName

AtomicType

A SequenceType is one of:
empty-sequence ()
KindTest
item ()

AtomicType

Where KindTest, item() or AtomicType can be
optionally followed by:

? (may be empty sequence)\

+ (is a non-empty sequence of the type)

* (is a sequence of the type, empty or
not)

Operator Precedence:

1 , (comma)

2 for some every if
3 or

4 and

5 = I= < <= > >=

eq ne It le gt ge is << >>
6 to

7 (two-argument) + -

8 * div idiv mod

9 union |

10 intersect except

11 instance of

12 treat as

13 castable as

14 castas
15 (one-argument) + -
16 / /]

17 step node-test $name
(Expr) function-call literal

Testing

Select based on the type of an expression (one or
more cases plus a default):

typeswitch (Expr) case ... default ...

where case and default are:
case SequenceType return Expr
case $VarName as SequenceType return Expr
default return Expr
default $VarName return Expr

Test if the condition is satisfied for at least one
combination of the bound expressions:

some VariableBinding , ... satisfies Expr

Test if the condition is satisfied for all of the
bound expressions:

every VariableBinding , ... satisfies Expr

where a VariableBinding is:
$VarName in Expr
$VarName as SequenceType in Expr
Select one or the other of two possibiliites:
if (Expr) then Expr else Expr

Either or both of two tests:
Expr or Expr Expr and Expr
Test if they are the same node:
Expr is Expr
Test if a node appears before or after another:
Expr << Expr Expr >> Expr
Test an expression’s dynamic type:

Expr instance of SequenceType

Test if an expression can be converted to a type:

Expr castable as AtomicType
Expr castable as AtomicType?

Compare two item values:

Expr eq Expr Expr ne Expr
Expr It Expr Expr le Expr
Expr gt Expr Expr ge Expr

Compare all items in one sequence to all items in

a second, and return if true for any pair of values:

Expr = Expr Expr != Expr
Expr < Expr Expr <= Expr
Expr > Expr Expr >= Expr

Names and Types

VarName AttributeName ElementName
TypeName AtomicType

are all XML QNames, with or without a colon-
separated prefix.

A SequenceType is one of:

empty-sequence () KindTest
item () AtomicType

Where KindTest, item() or AtomicType can be
optionally followed by:

? (may be empty sequence)

+ (is a non-empty sequence of the type)

* (is a sequence of the type, empty or
not)

Operator Precedence:

1 , (comma)

2 for let some every if typeswitch
3 or

4 and

5 = I= < <= > >=

eq ne It le gt ge is << >>
6 to

7 (two-argument) + -
8 * div idiv mod

9 union |

10 intersect except

11 instance of

12 treatas

13 castable as

14 cast as

15 (one-argument) + -

16 [/ //

17 step node-test $ name
(Expr) function-call literal
validate (#...#) constructor

ordered unordered

Predefined Namespace Names:

xml = http://www.w3.0org/XML/1998 /namespace
xs = http://www.w3.0rg/2001/XMLSchema

Xsi =
http://www.w3.0rg/2001/XMLSchema-instance
fn = http://www.w3.0rg/2005/xpath-functions

local =
http://www.w3.0rg/2005/xquery-local-functions

2008-07-21

XQuery 1.0
Quick Reference

See also the “XQuery 1.0 & XPath
2.0 Functions & Operators Quick
Reference”

Sam Wilmott
sam@wilmott.ca
http://www.wilmott.ca

and

Mulberry Technologies, Inc.

17 West Jefferson Street, Suite 207
Rockville, MD 20850 USA

Phone: +1 301/315-9631

Fax: +1 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

Mulberry
Technologies, Inc.

© 2007-2008 Sam Wilmott and
Mulberry Technologies, Inc.

FLWOR Expressions 197

FLWOR Expressions start with one or more for or let:
for SequenceVariableBinding , ...
let AssignedVariableBinding, ...

followed by:
where Expr (optional)
Orderinglnfo, ... (one or more, optional)

return Expr

where SequenceVariableBinding is one of:
$VarName in Expr
$VarName as SequenceType in Expr
$VarName at $ VarName in Expr

$VarName as SequenceType at $ VarName in Expr

where AssignedVariableBinding is one of:
$VvarName := Expr
$VarName as SequenceType := Exp

and where OrderingInfo consists of, in order:

stable (optional)

order Expr

ascending or descending (optional)

empty greatest or empty least (optional)

collation URILiteral (optional)
Constructors

< QName ... />

< QName ... > ... </ QName >

<![CDATA[... II>

<l— >

<? PITarget ... 2>

document { Expr }

element QName { OptionalExpr }

element { Expr } { OptionalExpr }

attribute QName { OptionalExpr }

attribute { Expr } { OptionalExpr }

text { Expr }

comment { Expr }

processing-instruction NCName { OptionalExpr }
processing-instruction { Expr } { OptionalExpr }

Within a constructor’s attribute values and
element content, literal "{" and "}" need doubling.
Anything within single "{" ... "}" is evaluated as an
Expr.

http://www.w3.org/2005/xquery-local-functions

. . . . i 198
4. Variable, Function and Option Declarations: @NameTest (attribute test)

XQuery Scripts Arithmetic Expressions

. NameTest child element test
An XQuery script consists of: zero or more of. + Expr Expr + Expr ()
declare variable VariableDeclaration := ExprSingle ; - Expr Expr - Expr KindTest (child node test)
1. A Version Declaration declare variable VariableDeclaration external ; Expr * Expr Expr div Expr (two dots: parent test)

declare function QName Expr idiv Expr
ParameterDeclarations ;

xquery version StringLiteral Expr mod Expr
query 9 Followed by zero or more predicates:

followed, optionally, by:

. o declare function QName Type Modification Expressions [Expr]
encoding StringLiteral ParameterDeclarations) .
external; Use as without converting: Where an AxisName is one of:

followed, optionally, by a semicolon (";").

declare function QName Expr treat as SequenceType

ancestor ancestor-or-self
L . ParameterDeclarations as U . ded and doable: . .
2. If an XQuery script is a Library Module, SequenceType external ; se as, converting as needed and doable: attribute child
then it's module namespace declaration declare option QName StringLiteral ; Expr cast as AtomicType descendant descendant-or-self

comes next:

module namespace NCName = URILiteral ; where ParameterDeclarations is one of: Expr cast as AtomicType? following following-sibling
' () (i.e. empty if no parameters) . . namespace parent
Simple Expressions recedin receding-siblin
3. Default Declarations and Imports: (VariableDeclaration) (for one parameter) $ VarN (dot: self p g p 9 g
arName . one dot: se

zero or more of: (VariableDeclaration , ...) (when two or more) O (Expr) self

declare default element namespace URILiteral ; where VariableDeclaration is one of: QName (Expr, ...) QName () A NameTest is one of:

declare default function namespace URILiteral ; $QName '”teQTr'—'_tera: DeIC|ma.IL|te|raI QName *

declare boundary-space preserve ; $QName as SequenceType DoubleLitera StringLitera NCName:* *:NCName

declare boundary-space strip ;
declare default collation URILiteral ;

and where URILiteralList is one of: And a KindTest is one of:

Validating Nodes

declare base-uri URILiteral ; 3§:Il:|tera: URILiteral validate { Expr } (defaults to strict) attribute (AttributeName)
! iteral at itera . .

declare construction strip ; .) validate lax { Expr } attribute (AttributeName , TypeName)
’ URILiteral at URILiteral , ... (two or more)

declare construction preserve ;

declare ordering ordered ;

declare ordering unordered ;

declare default order empty greatest ;

declare default order empty least ;

declare copy-namespaces preserve , inherit ;

declare copy-namespaces preserve , no-inherit ;

declare copy-namespaces no-preserve , inherit ;

declare copy-namespaces no-preserve ,
no-inherit ;

declare namespace NCName = URILiteral ;

import schema namespace NCName =
URILiteralList ;

import schema default element namespace
URILiteralList ;

import schema URILiteralList ;

import module namespace NCName =
URILiteralList ;

import module URILiteralList ;

XQuery 1.0:
http://www.w3.0org/TR/xquery/

5. Finally, if the XQuery script is a Main module,
not a Library module, an XQuery expression is
required to specify the query being made:

Expr

Creating Sequences
Create a sequence from a list of items:
Expr, ...
Note: A sequence list must usually be parenthesized.

Repeat over one or more sequences, returning a
sequence of results:

for VariableBinding , ... return Expr

Create a numeric sequences, from lower bound to
upper bound:

Expr to Expr

All the items appearing in either sequence:
Expr union Expr Expr | Expr

Only items appearing in both sequences:
Expr intersect Expr

All items in the first sequence not in second:
Expr except Expr

validate strict { Expr}

Ordering Mode for Sequences

ordered { Expr}

unordered { Expr }
Implementation-Defined
Instructions

(# QName ... #) ... { OptionalExpr }

Path Expressions

/ Top level, document root

/ Step At top level

Step Relative to current node

/] Step Anywhere within document
Path / Step Immediately within Path

Path // Step Anywhere within Path

Where a Step is one of:
Expr
AxisName :: NameTest

AxisName :: KindTest

attribute (* , TypeName)

attribute (*)

attribute ()

comment ()

document-node (element ...)
document-node (schema-element ...)
document-node ()

element (ElementName)

element (ElementName , TypeName)
element (*, TypeName)

element (*)

element ()

node ()

processing-instruction (NCName)
processing-instruction (StringLiteral)
processing-instruction ()
schema-attribute (AttributeName)
schema-element (ElementName)
text ()

Conditional and Looping
Instructions

<xsl:analyze-string select = expression
regex = { string }
flags = { string }>
<xsl:matching-substring>
sequence-constructor
</xsl:matching-substring>
<xsl:non-matching-substring>
sequence-constructor
< /xsl:non-matching-substring>
xsl:fallback*
</xsl:analyze-string>

One but not both of xsl:matching-substring and
xsl:non-matching-substring can be omitted.

regex-group(N) returns the Nth group matched
by the regex within xsl:matching-substring.

<xsl:choose>

<xsl:when test = expression>
sequence-constructor
</xsl:when>

<xsl:otherwise>
sequence-constructor
< /xsl:otherwise>

< /xsl:choose>

One or more xsl:when and zero or one
xsl:otherwise are alllowed.

<xsl:for-each select = expression>
xsl:sort*, sequence-constructor
</xsl:for-each>

<xsl:for-each-group select = expression

group-by = expression
group-adjacent = expression
group-starting-with = pattern
group-ending-with = pattern
collation = { uri }>

xsl:sort*,sequence-constructor

< /xsl:for-each-group>

<xsl:if test = expression>
sequence-constructor
</xsl:if>

Standard Attributes

Standard attributes are allowed on all elements.
When not on xsl: elements, the xsl: prefix is
required on the attribute name.

[xsl:]default-collation = uri
[xsl:]exclude-result-prefixes = tokens
[xsl:]extension-element-prefixes = tokens
[xsl:]luse-when = expression

[xsl:]version = "1.0" | "2.0"
[xsl:]xpath-default-namespace = uri

Value/Copy Instructions

<xsl:copy copy-namespaces = "yes" | "no"
inherit-namespaces = "yes" | "no"
use-attribute-sets = gnames
type = gname
validation = "strict" | "lax" |
"preserve" | "strip">
sequence-constructor
</xsl:copy>

<xsl:copy-of select = expression
copy-namespaces = "yes" | "no"
type = gname
validation = "strict" | "lax" |
"preserve" | "strip" />

<xsl:number value = expression

select = expression

level = "single" | "multiple" | "any"

count = pattern

from = pattern

format = { string }

lang = { nmtoken }

letter-value = { "alphabetic" |
"traditional" }

ordinal = { string }

grouping-separator = { char }

grouping-size = { number } />

<xsl:perform-sort select = expression>
xsl:sort+, sequence-constructor
</xsl:perform-sort>

<xsl:value-of select = expression
separator = { string }
disable-output-escaping = "yes
sequence-constructor
< /xsl:value-of>

no" >

disable-output-escaping is deprecated.

<xsl:sort select = expression
lang = { nmtoken }
order = { "ascending" | "descending"}
collation = { uri }
stable = { "yes" | "no" }
case-order = { "upper-first" | "lower-first" }
data-type = { "text" | "number" |
gqname-but-not-ncname } >
sequence-constructor
</xsl:sort>

xsl:sort is used in xsl:for-each,
xsl:for-each—group, xsl:apply-templates and
xsl:perform-sort.

XSLT 2.0:
http://www.w3.0org/TR/xslt20/
XPath 2.0:
http://www.w3.0org/TR/xpath20/
2008-07-21

XSLT 2.0
Quick Reference

Sam Wilmott
sam@wilmott.ca
http://www.wilmott.ca

and

Mulberry Technologies, Inc.

17 West Jefferson Street, Suite 207
Rockville, MD 20850 USA

Phone: +1 301/315-9631

Fax: +1 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

Mulberry
Technologies, Inc.

© 2007-2008 Sam Wilmott and
Mulberry Technologies, Inc.

The Stylesheet Element

<xsl:stylesheet id = id
extension-element-prefixes = tokens
exclude-result-prefixes = tokens
version = "1.0" | "2.0"
xpath-default-namespace = uri
default-validation = "preserve" | "strip"
default-collation = uri-list
input-type-annotations = "preserve" |
"strip" | "unspecified"
xmlns:xsl=
"http://www.w3.0rg/1999/XSL/Transform">
xsl:import*, top-level-declarations
</xsl:stylesheet>

xsl:transform is a synonym for xsl:stylesheet.
<xsl:import href = uri />

A literal result element can be used in place of
xsl:stylesheet, so long as it specifies attribute
xsl:version and namespace xmins:xsl.

Template Invocation Instructions

<xsl:apply-imports>
xsl:with-param*
</xsl:apply-imports>

<xsl:apply-templates select = expression
mode = token>
(xsl:sort | xsl:with-param)*
</xsl:apply-templates>

<xsl:call-template name = gname>
xsl:with-param*
</xsl:call-template>

<xsl:next-match>
(xsl:with-param | xsl:fallback)*
< /xsl:next-match>

<xsl:with-param name = gname
select = expression
as = sequence-type
tunnel = "yes" | "no">
sequence-constructor
< /xsl:with-param>

Exception-Handling Instructions

<xsl:fallback>
sequence-constructor
< /xsl:fallback>

<xsl:message select = expression
terminate = { "yes" | "no" }>
sequence-constructor
</xsl:message>

http://www.w3.org/TR/xpath20/

Top-Level Declarations

<xsl:attribute-set nhame = gname
use-attribute-sets = gnames>
xsl:attribute*
</xsl:attribute-set>

<xsl:character-map name = gname
use-character-maps = gnames>
xsl:output-character*
<xsl:output—character character = char
string = string />
</xsl:character-map>

One or more xsl:output-character is allowed.

<xsl:decimal-format name = gname
decimal-separator = char
grouping-separator = char
infinity = string
minus-sign = char
NaN = string
percent = char
per-mille = char
zero-digit = char
digit = char
pattern-separator = char />

<xsl:function name = gname
as = sequence-type
override = "yes" | "no">
xsl:param*, sequence-constructor
< /xsl:function>

<xsl:import-schema namespace = uri
schema-location = uri>
xs:schema?
< /xsl:import-schema>

<xsl:include href = uri />

<xsl:key name = gname
match = pattern
use = expression
collation = uri>
sequence-constructor
</xsl:key>

<xsl:namespace-alias
stylesheet-prefix = prefix | "#default"
result-prefix = prefix | "#default" />

Content Specification Options

? optional
* zero or more
+ one or more
#PCDATA just text

sequence-constructor Instructions and text

<xsl:output name = gname
method = "xml" | "html" | "xhtml" |
"text" |gname-but-not-ncname
byte-order-mark = "yes" | "no"
cdata-section-elements = gnames
doctype-public = string
doctype-system = string
encoding = string
escape-uri-attributes = "yes" | "no"
include-content-type = "yes" | "no"
indent = "yes" | "no"
media-type = string
normalization-form = "NFC" | "NFD" |
"NFKC" | "NFKD" | "none" |
"fully-normalized" | nmtoken
omit-xml-declaration = "yes" | "no"
standalone = "yes" | "no" | "omit"
undeclare-prefixes = "yes" | "no"
use-character-maps = gnames
version = nmtoken />

<xsl:param name = gname
select = expression
as = sequence-type
required = "yes" | "no"
tunnel = "yes" | "no">
sequence-constructor
</xsl:param>

xsl:param is also allowed in xsl:function and
xsl:template.

<xsl:preserve-space elements = tokens />
<xsl:strip-space elements = tokens />

<xsl:template match = pattern
name = gname
priority = number
mode = tokens
as = sequence-type>
xsl:param*, sequence-constructor
</xsl:template>

<xsl:variable name = gname
select = expression
as = sequence-type>
sequence-constructor
< /xsl:variable>

xsl:variable is also allowed in sequence-
constructor contexts.

Attribute Specification Options

{ } specified using an attribute
value template

bold = required attribute

non-bold = optional attribute

Node Constructing Instructions

<xsl:attribute name = { gname }
namespace = { uri }
select = expression
separator = { string }
type = gname
validation = "strict" | "lax" |
"preserve" | "strip">
sequence-constructor
< /xsl:attribute>

<xsl:comment select = expression>
sequence-constructor
</xsl:comment>

<xsl:document type = gname
validation = "strict" | "lax" |
"preserve" | "strip
sequence-constructor
</xsl:document>

"

>

<xsl:element name = { gname }
namespace = { uri}
inherit-namespaces = "yes" | "no"
use-attribute-sets = gnames
type = gname
validation = "strict" | "lax" |
"preserve" | "strip">
sequence-constructor
< /xsl:element>

Element nodes can also be constructed using XML
elements not in the xsl: namespace, which can

also specify xsl:type, xsl:validation and
xsl:use-attribute-sets attributes.

<xsl:namespace name = { ncname }
select = expression>
sequence-constructor
</xsl:namespace>

<xsl:processing-instruction
name = { ncname }
select = expression>
sequence-constructor
< /xsl:processing-instruction>

<xsl:sequence select = expression>
xsl:fallback*
</xsl:sequence>

<xsl:text disable-output-escaping = "yes" | "no" >

#PCDATA
</xsl:text>

disable-output-escaping is deprecated.

Text also constructs text nodes.

<xsl:result-document format = { qZde }

href = { uri }
validation = "strict" | "lax" |
"preserve" | "strip"

type = gname
method = { "xml" | "html!" | "xhtmI" |

"text" | gname-but-not-ncname }
byte-order-mark = { "yes" | "no" }
cdata-section-elements = { gnames }
doctype-public = { string }
doctype-system = { string }
encoding = { string }
escape-uri-attributes = { "yes" | "no" }
include-content-type = { "yes" | "no" }

indent = { "yes" | "no" }

media-type = { string }

normalization-form = { "NFC" | "NFD" |
"NFKC" | "NFKD" | "none” |
"fully-normalized" | nmtoken }

omit-xml-declaration = { "yes" | "no" }

standalone = { "yes" | "no" | "omit" }

undeclare-prefixes = { "yes" | "no" }

use-character-maps = gnames

output-version = { nmtoken } >

sequence-constructor
</xsl:result-document>

XSL-List:
http://www.mulberrytech.com/xsl/xsl-list

Allowed Attribute Values:

char a single character
expression an XPath expression
id an ID attribute value
ncname a name with no
namespace prefix
nmtoken a number token
number a number (only digits)
pattern an XPath expression
conforming to pattern
syntax
prefix a namespace prefix

gname-but-not-ncname
gname

sequence-type

a name with a
namespace prefix

a name with or without a
namespace prefix

an XML Schema
sequence type (with *)

string just text

token specific to its use

uri-list white-space separated
list of URIs

uri a uniform resource

identifier

201

Supplemental Readings

O'REILLY"

SEARCH ACROSS A VARIETY
OF XML DATA

Priscilla Walmsley

203

Preface

1.

Table of Contents

Introductionto XQuery.........ccvviiviiiiiiiiiiiiiiiiineenn,

What Is XQuery?
Capabilities of XQuery
Uses for XQuery
Processing Scenarios
Easing into XQuery
Path Expressions
FLWORs
Adding XML Elements and Attributes
Adding Elements
Adding Attributes
Functions
Joins
Aggregating and Grouping Values

. XQuery Foundations.ooviiiiiiiiiiiiiiiiiiiiiiiienn,

The Design and History of the XQuery Language
XQuery in Context

XQuery and XPath

XQuery Versus XSLT

XQuery Versus SQL

XQuery and XML Schema
Processing Queries

Input Documents

The Query

The Context

N Ul WD - -

— = =
N NN~ —= O

15
15
16
16
16
17
17
18
18
19
20

The Query Processor
The Results of the Query
The XQuery Data Model
Nodes
Atomic Values
Sequences
Types
Namespaces

Expressions: XQuery Building Blocks.ccoovviiiiiiiinnnt,

Categories of Expressions

Keywords and Names

Whitespace in Queries

Literals

Variables

Function Calls

Comments

Precedence and Parentheses

Comparison Expressions
General Comparisons
Value Comparisons
Node Comparisons

Conditional (if-then-else) Expressions
Conditional Expressions and Effective Boolean Value
Nesting Conditional Expressions

Switch Expressions

Logical (and/or) Expressions
Precedence of Logical Expressions
Negating a Boolean Value

Navigating XML by Using Paths..............ccooiiiiiiiiininnan,

Path Expressions
Path Expressions and Context
Steps
Axes
Node Tests
Abbreviated Syntax
Other Expressions as Steps
Predicates
Comparisons in Predicates
Using Positions in Predicates
Using Multiple Predicates

204

20
21
21
22
26
27
28
28

31
31
32
33
33
34
34
35
35
37
37
38
40
41
42
43
43
45
45
46

47
47
48
49
49
50
53
53
54
55
56
59

iv

| Table of Contents

More Complex Predicates

A Closer Look at Context
Working with the Context Node
Accessing the Root

Dynamic Paths

The Simple Map Operator

. Adding Elements and Attributes toResults......................

Including Elements and Attributes from the Input Document
Direct Element Constructors
Containing Literal Characters
Containing Other Element Constructors
Containing Enclosed Expressions
Specifying Attributes Directly
Declaring Namespaces in Direct Constructors
Use Case: Modifying an Element from the Input Document
Direct Element Constructors and Whitespace
Computed Constructors
Computed Element Constructors
Computed Attribute Constructors
Use Case: Turning Content to Markup

. Selecting and Joining Using FLWORSs.c.covvuevvnnnnnn.

Selecting with Path Expressions
FLWOR Expressions

The for Clause

The let Clause

The where Clause

The return Clause

The Scope of Variables
Quantified Expressions

Binding Multiple Variables
Selecting Distinct Values
Joins

Three-Way Joins

Outer Joins

Joins and Types

. Sortingand Grouping.c.vveviieiiirinerenieenneennenens

Sorting in XQuery
The order by Clause
The sort Function

205

59
60
61
61
62
63

............... 65

65
66
67
68
68
71
72
73
74
77
77
80
80

.............. 83

83
83
85
88
89
90
91
91
93
93
95
96
96
98

............... 99

99
99
103

Table of Contents | v

Document Order

Document Order Comparisons

Reversing the Order

Indicating That Order Is Not Significant
Grouping

Grouping Using the group by Clause
Aggregating Values

Ignoring “Missing” Values

Counting “Missing” Values

Aggregating on Multiple Values

Constraining and Sorting on Aggregated Values

FUNCEIONS. . oot v et ettt ittt ittt eiteienrennennennens

Built-in Versus User-Defined Functions
Calling Functions

Function Names

Function Signatures

Argument Lists

Sequence Types

Calling Functions with the Arrow Operator
User-Defined Functions

Why Define Your Own Functions?

Function Declarations

The Function Body

The Function Name

The Parameter List

Functions and Context

Recursive Functions

. Advanced QUeKIeS. . ..vvv vttt ettt

Working with Positions and Sequence Numbers
Adding Sequence Numbers to Results
Using the count Clause
Testing for the Last Item

Windowing
Using start and end Conditions
Windows Based on Position
Windows Based on Previous or Next Items
Sliding Windows

Copying Input Elements with Modifications
Adding Attributes to an Element
Removing Attributes from an Element

206

103
105
106
106
108
109
112
114
115
116
116

119
119
119
120
121
121
123
124
124
124
125
126
127
127
130
130

133
133
133
135
137
138
140
141
142
143
144
145
146

vi

| Table of Contents

10.

1.

Removing Attributes from All Descendants
Removing Child Elements
Changing Names

Combining Results
Sequence Constructors
The union Expression
The intersect Expression
The except Expression

Using Intermediate XML Documents
Creating Lookup Tables
Reducing Complexity

Namespaces and XQUerY.oveuuirinirinnieneeinerenneenneennesennsens
XML Namespaces
Namespace URIs
Declaring Namespaces
Default Namespace Declarations
Namespaces and Attributes
Namespace Declarations and Scope
Namespaces and XQuery
Namespace Declarations in Queries
Predeclared Namespaces
Prolog Namespace Declarations
Namespace Declarations in Direct Element Constructors
Namespace Declarations in Computed Constructors
The Impact and Scope of Namespace Declarations
Controlling Namespace Declarations in Your Results
In-Scope Versus Statically Known Namespaces
Controlling the Copying of Namespace Declarations
URI-Qualified Names

ACloser Look at TYPeS. .o v oevveeeeeetieetieeeeeenaeenneennesennesnneennes
The XQuery Type System
Advantages of a Strong Type System
Do You Need to Care About Types?
The Built-in Types
Atomic Types
List Types
Union Types
Types, Nodes, and Atomic Values
Nodes and Types
Atomic Values and Types

207

147
147
148
150
150
151
151
151
152
152
153

157
157
157
158
159
159
160
161
162
162
163
166
167
168
170
171
174
177

179
179
179
180
181
181
183
183
183
183
184

Table of Contents

vii

12.

13.

Type Checking in XQuery
The Static Analysis Phase
The Dynamic Evaluation Phase
Automatic Type Conversions
Subtype Substitution
Type Promotion
Casting of Untyped Values
Atomization
Effective Boolean Value
Function Conversion Rules
Sequence Types
Occurrence Indicators
Generic Sequence Types
Simple Type Names as Sequence Types
Element and Attribute Tests
Sequence Type Matching
The instance of Expression
Constructors and Casting
Constructors
The Cast Expression
The Castable Expression
Casting Rules

Prologs, Modules, and Variables.c.coeeenns.

Structure of a Query: Prolog and Body
Prolog Declarations
The Version Declaration
Assembling Queries from Multiple Modules
Library Modules
Importing a Library Module
Loading a Library Module Dynamically
Variable Declarations
Variable Declaration Syntax
The Scope of Variables
Variable Names
Initializing Expressions
External Variables
Private Functions and Variables
Declaring External Functions

Inputsand Qutputs.oovvienniiniiiiiiiii e eeennnns

Types of Input and Output Documents

ooooooooooooooo

208

184
184
185
185
185
186
186
186
187
189
190
191
192
193
193
194
194
195
195
196
197
198

201
201
202
203
204
204
205
207
208
208
209
209
210
210
211
211

213
213

viii

| Table of Contents

14.

15.

Accessing Input Documents
Accessing a Single Document with a Function
Accessing a Collection
Setting the Context Outside the Query
Using Variables
Setting the Context in the Prolog
Serializing Output
Serialization Methods
Serialization Parameters
Specifying Serialization Parameters by Using Option Declarations
Specifying Serialization Parameters by Using a Separate XML Document
Serialization Errors
Serializing to a String

Using Schemas with XQuery...........ooiiiiiiiiiiiiiii i
What Is a Schema?
Why Use Schemas with Queries?
W3C XML Schema: A Brief Overview
Element and Attribute Declarations
Types
Namespaces and XML Schema
In-Scope Schema Definitions
Where Do In-Scope Schema Definitions Come From?
Schema Imports
Schema Validation and Type Assignment
The Validate Expression
Validation Mode
Assigning Type Annotations to Nodes
Nodes and Typed Values
Types and Newly Constructed Elements and Attributes
Sequence Types and Schemas

StAtiCTYPING. .ot e

What Is Static Typing?
Obvious Static Type Errors
Static Typing and Schemas
Raising “False” Errors
Static Typing Expressions and Constructs
The Typeswitch Expression
The Treat Expression
Type Declarations
Type Declarations in FLWORs

209

214
214
215
216
216
217
217
218
220
224
225
226
226

227
227
228
230
230
231
232
233
233
234
236
236
238
238
239
240
241

245
245
246
246
247
247
248
250
251
251

Table of Contents

16.

17.

Type Declarations in Quantified Expressions
Type Declarations in Global Variable Declarations

The zero-or-one, one-or-more, and exactly-one Functions

Writing Better QUeries.oovvvviirinieiiiriinrenneenneenns,

Query Design Goals
Clarity
Improving the Layout
Choosing Names
Using Comments for Documentation
Modularity
Robustness
Handling Data Variations
Handling Missing Values
Error Handling
Avoiding Dynamic Errors
The error and trace Functions
Try/Catch Expressions
Performance
Avoid Reevaluating the Same or Similar Expressions
Avoid Unnecessary Sorting
Avoid Expensive Path Expressions
Use Predicates Instead of where Clauses

Working with Numbers.cooiuiiiiiiiiiiiiii i iiiiiieanns

The Numeric Types
The xs:decimal Type
The xs:integer Type
The xs: float and xs:double Types
The xs:numeric Type

Constructing Numeric Values
The number Function
Numeric Type Promotion

Comparing Numeric Values

Arithmetic Operations
Arithmetic Operations on Multiple Values
Arithmetic Operations and Types
Precedence of Arithmetic Operators
Addition, Subtraction, and Multiplication
Division
Modulus (Remainder)

Functions on Numbers

210

252
253
253

255
255
256
256
257
257
259
259
259
260
262
262
263
263
265
266
266
267
268

269
269
269
269
270
270
270
271
271
272
273
274
274
274
275
275
276
277

X

Table of Contents

18.

19.

Formatting Numbers
Formatting Integers
Formatting Decimal Numbers
The Decimal Format Declaration

Working with STrings.oovvniiiiiiiii it i i
The xs:string Type
Constructing Strings
String Literals
The xs:string Constructor and the string Function
Comparing Strings
Comparing Entire Strings
Determining Whether a String Contains Another String
Matching a String to a Pattern
Substrings
Finding the Length of a String
Concatenating and Splitting Strings
Concatenating Strings
Splitting Strings Apart
Converting Between Codepoints and Strings
Manipulating Strings
Converting Between Uppercase and Lowercase
Replacing Individual Characters in Strings
Replacing Substrings That Match a Pattern
Whitespace and Strings
Normalizing Whitespace
Internationalization Considerations
Collations
Unicode Normalization
Determining the Language of an Element

Reqular EXpPressions.oueeueeeneiieineeneeneenerneenneenecneeneenannns
The Structure of a Regular Expression

Atoms

Quantifiers

Parenthesized Sub-Expressions and Branches
Representing Individual Characters
Representing Any Character
Representing Groups of Characters

Multi-Character Escapes

Category Escapes

Block Escapes

211

279
279
280
280

283
283
283
284
284
284
285
285
286
287
288
289
289
290
291
291
291
292
292
294
294
295
295
297
297

299
299
299
299
300
301
303
303
304
304
305

Table of Contents

| xi

20.

21.

Character Class Expressions
Single Characters and Ranges
Subtraction from a Range
Negative Character Class Expressions
Escaping Rules for Character Class Expressions
Reluctant Quantifiers
Anchors
Back-References
Using Flags
Using Sub-Expressions with Replacement Variables

Working with Dates, Times, and Durations...............covvviiiiennnen

The Date and Time Types
Constructing and Casting Dates and Times
Time Zones
Comparing Dates and Times
The Duration Types
The xs:yearMonthDuration and xs:dayTimeDuration Types
Comparing Durations
Extracting Components of Dates, Times, and Durations
Formatting Dates and Times
Using Arithmetic Operators on Dates, Times, and Durations
Subtracting Dates and Times
Adding and Subtracting Durations from Dates and Times
Adding and Subtracting Two Durations
Multiplying and Dividing Durations by Numbers
Dividing Durations by Durations
The Date Component Types

Working with Qualified Names, URIs, andIDs..............c.coeveeennnt

Working with Qualified Names
Retrieving Node Names
Constructing Qualified Names
Other Name-Related Functions

Working with URIs
Base and Relative URIs
Documents and URIs
Escaping URIs

Working with IDs
Joining IDs and IDREFs
Constructing ID Attributes
Generating Unique ID Values

212

306
306
307
307
308
308
309
310
311
312

315
315
316
317
318
319
320
320
321
322
323
323
324
325
326
326
327

329
329
330
332
333
334
334
336
338
339
340
341
341

Xii

| Table of Contents

22,

23.

24,

213

Working with Other XML Constructs.oouvveuiieineriiniinnienneennenenns 343
XML Comments 343
XML Comments and the Data Model 343
Querying Comments 344
Comments and Sequence Types 344
Constructing Comments 345
Processing Instructions 346
Processing Instructions and the Data Model 346
Querying Processing Instructions 347
Processing Instructions and Sequence Types 347
Constructing Processing Instructions 348
Documents 349
Document Nodes and the Data Model 349
Document Nodes and Sequence Types 350
Constructing Document Nodes 350
Text Nodes 351
Text Nodes and the Data Model 351
Querying Text Nodes 352
Text Nodes and Sequence Types 353
Why Work with Text Nodes? 353
Constructing Text Nodes 355
XML Entity and Character References 355
CDATA Sections 357
Function Items and Higher-Order Functions...............coovviiiiiiiiinnnen. 359
Why Higher-Order Functions? 359
Constructing Functions and Calling Them Dynamically 360
Named Function References 360
Using function-lookup to Obtain a Function 361
Inline Function Expressions 361
Partial Function Application 362
The Arrow Operator and Dynamic Function Calls 363
Syntax Recap 363
Functions and Sequence Types 364
Higher-Order Functions 364
Built-In Higher-Order Functions 365
Writing Your Own Higher-Order Functions 366
Maps, Arrays, and JSON.oouuiiiiiii i 369
Maps 369
Constructing Maps 369
Looking Up Map Values 371

Table of Contents

| xiii

25.

26.

Querying Maps

Changing Maps

Iterating over Entries in a Map

Maps and Sequence Types
Arrays

Constructing Arrays

Arrays Versus Sequences

Arrays and Atomization

Looking Up Array Values

Querying Arrays

Changing Arrays

Arrays and Sequence Types
JSON

Parsing JSON

Serializing JSON

Converting Between JSON and XML

Implementation-SpecificFeatures..............ccovviiiiinnn.n.

Conformance
Version Support
New Features in XQuery 3.0
New Features in XQuery 3.1
Setting the Query Context
The Option Declaration
Extension Expressions
Annotations

XQuery for SQLUSErS.oeeenieeeiiie et iiee s

Relational Versus XML Data Models
Comparing SQL Syntax with XQuery Syntax
A Simple Query
Conditions and Operators
Functions
Selecting Distinct Values
Working with Multiple Tables and Subqueries
Grouping
Combining SQL and XQuery
Combining Structured and Semi-Structured Data
Flexible Data Structures
SQL/XML

214

375
375
376
376
378
378
379
380
380
382
383
384
385
385
386
387

391
391
392
392
393
394
395
396
397

399
399
401
401
402
404
405
406
408
408
409
409
411

Xiv

| Table of Contents

215

27, XQUErY fOr XSLTUSEIS. . . veveeeeeeneeeeneeeennneseeneesennnesennnasennns 413
XQuery and XPath 413
XQuery Versus XSLT 413

Shared Components 414
Equivalent Components 414
Differences 415
Using XQuery and XSLT Together 420
XQuery Backward Compatibility with XPath 1.0 421
Data Model 421
New Expressions 422
Path Expressions 422
Function Conversion Rules 423
Arithmetic and Comparison Expressions 423
Built-in Functions 424

28. Additional XQuery-Related Standards.coiiiiiiiiiiiiiiiiii., 425
XQuery Update Facility 425
Full-Text Search 426
XQueryX 428
RESTXQ 430
XQuery API for Java (XQJ) 432

A. Built-in Function Reference.............oooiiiiiiiiiiiiiiiiiiii i, 435
T L 3 635
L (0T 1111111 T /S 667
INdeX. ... 705

Table of Contents | xv

216

SECOND EDITION

XQuery

Search Across a Variety of XML Data

Priscilla Walmsley

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAG

217

XQuery
by Priscilla Walmsley

Copyright © 2016 Priscilla Walmsley. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley Indexer: Priscilla Walmsley
Production Editor: Shiny Kalapurakkel Interior Designer: David Futato
Copyeditor: Nan Reinhardt Cover Designer: Karen Montgomery
Proofreader: Sonia Saruba lllustrator: Rebecca Demarest
March 2007: First Edition

December 2015: Second Edition

Revision History for the Second Edition
2015-11-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491915103 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. XQuery, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-91510-3
[LSI]

218

CHAPTER 1
Introduction to XQuery

This chapter provides background on the purpose and capabilities of XQuery. It also
gives a quick introduction to the features of XQuery that are covered in more detail
later in the book. It is designed to provide a basic familiarity with the most commonly
used kinds of expressions, without getting too bogged down in the details.

What Is XQuery?

The use of XML has exploded in recent years. An enormous amount of information
is now stored in XML, both in XML databases and in documents on a filesystem. This
includes highly structured data such as sales figures, semi-structured data such as
product catalogs and yellow pages, and relatively unstructured data such as letters
and books. Even more information is passed between systems as transitory XML
documents.

All of this data is used for a variety of purposes. For example, sales figures may be
useful for compiling financial statements that may be published on the Web, report-
ing results to the tax authorities, calculating bonuses for salespeople, or creating
internal reports for planning. For each of these uses, we are interested in different ele-
ments of the data and expect it to be formatted and transformed according to our
needs.

XQuery is a query language designed by the W3C to address these needs. It allows
you to select the XML data elements of interest, reorganize and possibly transform
them, and return the results in a structure of your choosing.

219

Capabilities of XQuery

XQuery has a rich set of features that allow many different types of operations on
XML data and documents, including:

Selecting information based on specific criteria

Filtering out unwanted information

Searching for information within a document or set of documents
Joining data from multiple documents or collections of documents
Sorting, grouping, and aggregating data

Transforming and restructuring XML data into another XML vocabulary or
structure

Performing arithmetic calculations on numbers and dates

Manipulating strings to reformat text

As you can see, XQuery can be used not just to extract sections of XML documents,
but also to manipulate and transform the results for output. In fact, XQuery is a
Turing-complete functional programming language, which means you can also use it
for general-purpose programming and application development, not just for query-
ing data.

Uses for XQuery

There are as many reasons to query XML as there are reasons to use XML. Some
examples of common uses for the XQuery language are:

Finding textual documents in a native XML database and presenting styled
results

Generating reports on data stored in a database for presentation on the Web as
HTML

Extracting information from a relational database for use in a web service

Pulling data from databases or packaged software and transforming it for appli-
cation integration

Combining content from traditionally non-XML sources to implement content
management and delivery

Ad hoc querying of standalone XML documents for the purposes of testing or
research

Building entire complex web applications

2

Chapter 1: Introduction to XQuery

220

Processing Scenarios

XQuery’s sweet spot is querying bodies of XML content that encompass many XML
documents, often stored in databases. For this reason, it is sometimes called the “SQL
of XML Some of the earliest XQuery implementations were in native XML database
products. The term “native XML database” generally refers to a database that is
designed for XML content from the ground up, as opposed to a traditionally rela-
tional database. Rather than being oriented around tables and columns, its data
model is based on hierarchical documents and collections of documents.

Native XML databases are most often used for narrative content and other data that is
less predictable than what you would typically store in a relational database. Many of
these products are now known by the broader term NoSQL database and provide
support for not just XML but also JSON and other data formats. Examples of these
database products that support XQuery are eXist, MarkLogic Server, BaseX, Zorba,
and EMC Documentum xDB. Of these, all but MarkLogic Server and EMC Docu-
mentum xDB are open source. These products provide the traditional capabilities of
databases, such as data storage, indexing, querying, loading, extracting, backup, and
recovery. Most of them also provide some added value in addition to their database
capabilities. For example, they might provide advanced full-text searching functional-
ity, document conversion services, or end-user interfaces.

Major relational database products, including Oracle (via its XML DB), IBM DB2 (via
pureXML), and Microsoft SQL Server, also have support for XML and various ver-
sions of XQuery. Early implementations of XML in relational databases involved stor-
ing XML in table columns as blobs or character strings and providing query access to
those columns. However, these vendors are increasingly blurring the line between
native XML databases and relational databases with new features that allow you to
store XML natively.

Other XQuery processors are not embedded in a database product, but work inde-
pendently. They might be used on physical XML documents stored as files on a file
system or on the Web. They might also operate on XML data that is passed in mem-
ory from some other process. The most notable product in this category is Saxon,
which has both open source and commercial versions. Altova’s RaptorXML also pro-
vides support for standalone XQuery queries.

XML editors provide support for editing and running XQuery queries and displaying
the results. Some, like Altova’s XMLSpy, have their own embedded XQuery imple-
mentations. Others, like 0Xygen XML Editor, allow you to run queries using one or
more separate XQuery processors. If you are new to XQuery, a free trial license to a
product like 0Xygen or XMLSpy is a good way to get started running queries.

What Is XQuery? | 3

221

Easing into XQuery

The rest of this chapter takes you through a set of example queries, each of which
builds on the previous one. Three XML documents are used repeatedly as input
documents to the query examples throughout the book. They will be used so fre-
quently that it may be worth printing them from the companion web site at http://
www.datypic.com/books/xquery/chapter01.html so that you can view them alongside
the examples.

These three examples are quite simplistic, but they are useful for educational pur-
poses because they are easy to learn and remember while looking at query examples.
In reality, most XQuery queries will be executed against much more complex docu-
ments, and often against multiple documents as a collection. However, in order to
keep the examples reasonably concise and clear, this book will work with smaller
documents that have a representative mix of XML characteristics.

The catalog.xml document is a product catalog containing general information about
products (Example 1-1).

Example 1-1. Product catalog input document (catalog.xml)

<catalog>
<product dept="WMN">
<number>557</number>
<name language="en">Fleece Pullover</name>
<colorChoices>navy black</colorChoices>
</product>
<product dept="ACC">
<number>563</number>
<name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC">
<number>443</number>
<name language="en"s>Deluxe Travel Bag</name>
</product>
<product dept="MEN">
<number>784</number>
<name language="en">Cotton Dress Shirt</name>
<colorChoices>white gray</colorChoices>
<desc>0ur <i>favorite</i> shirt!</desc>
</product>
</catalog>

The prices.xml document contains prices for most of the products, based on an effec-
tive date (Example 1-2).

4 | Chapter 1: Introduction to XQuery

222

Example 1-2. Price information input document (prices.xml)

<prices>
<pricelList effDate="2015-11-15">
<prod num="557">
<price currency="USD">29.99</price>
<discount type="CLR">10.00</discount>
</prod>
<prod num="563">
<price currency="USD">69.99</price>
</prod>
<prod num="443">
<price currency="USD">39.99</price>
<discount type="CLR">3.99</discount>
</prod>
</priceList>
</prices>

The order.xml document is a simple order containing a list of products ordered (ref-
erenced by a number that matches the number used in catalog.xml), along with quan-
tities and colors (Example 1-3).

Example 1-3. Order input document (order.xml)

<order num="00299432" date="2015-09-15" cust="0221A">
<item dept="WMN" num="557" quantity="1" color="navy"/>
<item dept="ACC" num="563" quantity="1"/>
<item dept="ACC" num="443" quantity="2"/>
<item dept="MEN" num="784" quantity="1" color="white"/>
<item dept="MEN" num="784" quantity="1" color="gray"/>
<item dept="WMN" num="557" quantity="1" color="black"/>
</order>

Path Expressions

The most straightforward kind of query simply selects elements or attributes from an
input document. This type of query is known as a path expression. For example, the
path expression:

doc("catalog.xml")/catalog/product
will select all the product elements from the catalog.xml document.

Path expressions are used to traverse an XML tree to select elements and attributes of
interest. They are similar to paths used for filenames in many operating systems.
They consist of a series of steps, separated by slashes, that traverse the elements and
attributes in the XML documents. In this example, there are three steps:

Path Expressions | 5

223

1. doc("catalog.xml") calls an XQuery function named doc, passing it the name
of the file to open

2. catalog selects the catalog element, the outermost element of the document

3. product selects all the product children of catalog

The result of the query will be the four product elements, exactly as they appear (with
the same attributes and contents) in the input document. Example 1-4 shows the
complete result.

Example 1-4. Four product elements selected from the catalog

<product dept="WMN">
<number>557</number>
<name language="en">Fleece Pullover</name>
<colorChoices>navy black</colorChoices>
</product>
<product dept="ACC">
<number>563</number>
<name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC">
<number>443</number>
<name language="en"s>Deluxe Travel Bag</name>
</product>
<product dept="MEN">
<number>784</number>
<name language="en">Cotton Dress Shirt</name>
<colorChoices>white gray</colorChoices>
<desc>0ur <i>favorite</i> shirt!</desc>
</product>

The asterisk (*) can be used as a wildcard to indicate any element name. For example,
the path expression:
doc("catalog.xml")/*/product

will return any product children of the outermost element, regardless of the outer-
most element’s name. Alternatively, you can use a double slash (//) to return product
elements that appear anywhere in the catalog document, as in:

doc("catalog.xml")//product

In addition to traversing the XML document, a path expression can contain predi-
cates that filter out elements or attributes that do not meet a particular criterion.
Predicates are indicated by square brackets. For example, the path expression:

doc("catalog.xml")/catalog/product[@dept = "ACC"]

6 | Chapter1: Introduction to XQuery

224

contains a predicate. It selects only those product elements whose dept attribute
value is ACC. The @ sign is used to indicate that dept is an attribute as opposed to a
child element.

When a predicate contains a number, it serves as an index. For example:
doc("catalog.xml")/catalog/product[2]
will return the second product element in the catalog.

Path expressions are convenient because of their compact, easy-to-remember syntax.
However, they have a limitation: they can only return elements and attributes as they
appear in input documents. Any elements selected in a path expression appear in the
results with the same names, the same attributes and contents, and in the same order
as in the input document. When you select the product elements, you get them with
all of their children and with their dept attributes. Path expressions are covered in
detail in Chapter 4.

FLWORs

The basic structure of many (but not all) queries is the FLWOR expression. FLWOR
(pronounced “flower”) stands for “for, let, where, order by, return,” the most common
keywords used in the expression.

FLWORs, unlike path expressions, allow you to manipulate, transform, and sort your
results. Example 1-5 shows a simple FLWOR that returns the names of all products in
the ACC department.

Example 1-5. Simple FLWOR

Query

for $prod in doc("catalog.xml")/catalog/product
where $prod/@dept = "ACC"

order by $prod/name

return $prod/name

Results

<name language="en">Deluxe Travel Bag</name>
<name language="en">Floppy Sun Hat</name>

As you can see, the FLWOR is made up of several parts:

for
This clause sets up an iteration through the product elements, and the rest of the
FLWOR is evaluated once for each of the four products. Each time, a variable

FLWORs | 7

225

named $prod is bound to a different product element. Dollar signs are used to
indicate variable names in XQuery.

where
This clause selects only products in the ACC department. This has the same
effect as a predicate ([@dept = "ACC"]) in a path expression.

order by
This clause sorts the results by product name, something that is not possible with
path expressions.

return
This clause indicates that the product element’s name children should be returned
in the query result.

The let clause (the L in FLWOR) is used to bind the value of a variable. Unlike a for
clause, it does not set up an iteration. Example 1-6 shows a FLWOR that returns the
same result as Example 1-5. The second line is a let clause that binds the product
element’s name child to a variable called $name. The $name variable is then referenced
later in the FLWOR, in both the order by clause and the return clause.

Example 1-6. Adding a let clause

for S$prod in doc("catalog.xml")/catalog/product
let $name := $prod/name

where $prod/@dept = "ACC"

order by $name

return $name

The let clause serves as a programmatic convenience that avoids repeating the same
expression multiple times. With some implementations, it may improve performance
because the expression is evaluated only once instead of each time it is needed.

This chapter has provided only very basic examples of FLWORs. In fact, FLWORs can
become quite complex. Multiple for clauses are permitted, which set up iterations
within iterations. Additional clauses such as group by, count, and window are avail-
able. In addition, complex expressions can be used in any of the clauses. FLWORs are
discussed in detail in Chapter 6. Even more advanced examples of FLWORs are pro-
vided in Chapter 9.

Adding XML Elements and Attributes

Sometimes you want to reorganize or transform the elements in the input documents
into differently named or structured elements. XML constructors can be used to cre-
ate elements and attributes that appear in the query results.

8 | Chapter1: Introduction to XQuery

226

Adding Elements

Suppose you want to wrap the results of your query in a different XML vocabulary,
for example, XHTML. You can do this using a familiar XML-like syntax. To wrap the
name elements in a ul element, for instance, you can use the query shown in
Example 1-7. The ul element represents an unordered list in HTML.

Example 1-7. Wrapping results in a new element

Query

{
for $prod in doc("catalog.xml")/catalog/product
where $prod/@dept="'ACC'
order by S$prod/name
return $prod/name
}

Results

<name language="en"s>Deluxe Travel Bag</name>
<name language="en">Floppy Sun Hat</name>

This example is the same as Example 1-5, with the addition of the first and last lines.
In the query, the ul start tag and end tag, and everything in between, is known as an
element constructor. The curly braces around the content of the ul element signify
that it is an expression (known as an enclosed expression) that is to be evaluated. In
this case, the enclosed expression returns two elements, which become children of ul.

Any content in an element constructor that is not inside curly braces appears in the
results as is. For example:

<h1>There are {count(doc("catalog.xml")//product)} products.</h1>
will return the result:

<h1>There are 4 products.</h1l>

The content outside the curly braces, namely the strings "There are and

" products.", appear literally in the results, as textual content of the h1 element.

The element constructor does not need to be the outermost expression in the query.
You can include element constructors at various places in your query. For example, if
you want to wrap each resulting name element in its own 11 element, you could use
the query shown in Example 1-8. An 11 element represents a list item in HTML.

Adding XML Elements and Attributes | 9

227

Example 1-8. Element constructor in FLWOR return clause

Query

{
for $prod in doc("catalog.xml")/catalog/product
where S$prod/@dept="ACC'
order by Sprod/name
return {$prod/name}</1i>
}

Results

<name language="en"sDeluxe Travel Bag</name></1li>
<npame language="en">Floppy Sun Hat</name>

Here, the 11 element constructor appears in the return clause of a FLWOR. Since the
return clause is evaluated once for each iteration of the for clause, two 11 elements
appear in the results, each with a name element as its child.

However, suppose you don’t want to include the name elements at all, just their con-
tents. You can do this by calling a built-in function called data, which extracts the
contents of an element. This is shown in Example 1-9.

Example 1-9. Using the data function

Query

{
for $prod in doc("catalog.xml")/catalog/product
where $prod/@dept="'ACC'
order by Sprod/name
return {data($prod/name)}</11i>
}

Results

Deluxe Travel Bag
Floppy Sun Hat

Now no name elements appear in the results. In fact, no elements at all from the input
document appear.

10 | Chapter 1: Introduction to XQuery

228

Adding Attributes

You can also add your own attributes to results using an XML-like syntax.
Example 1-10 adds attributes to the ul and 11 elements.

Example 1-10. Adding attributes to results

Query

<ul type="square">{

for Sprod in doc("catalog.xml")/catalog/product

where $prod/@dept="ACC'

order by Sprod/name

return <1li class="{$prod/@dept}">{data($prod/name)}</1i>
}

Results

<ul type="square"s>
<1li class="ACC">Deluxe Travel Bag
<1i class="ACC">Floppy Sun Hat

As you can see, attribute values, like element content, can either be literal text or
enclosed expressions. The ul element constructor has an attribute type that is
included as is in the results, while the 11 element constructor has an attribute class
whose value is an enclosed expression delimited by curly braces. In attribute values,
unlike element content, you don’t need to use the data function to extract the value: it
happens automatically.

The constructors shown in these examples are known as direct constructors, because
they use an XML-like syntax. You can also construct elements and attributes with
dynamically determined names, using computed constructors. Chapter 5 provides
detailed coverage of XML constructors.

Functions

Almost 200 functions are built into XQuery, covering a broad range of functionality.
Functions can be used to manipulate strings and dates, perform mathematical calcu-
lations, combine sequences of elements, and perform many other useful jobs. You can
also define your own functions, either in the query itself, or in an external library.

Both built-in and user-defined functions can be called from almost any place in a
query. For instance, Example 1-9 calls the doc function in a for clause, and the data
function in an enclosed expression. Chapter 8 explains how to call functions and also

Functions | 11

229

describes how to write your own user-defined functions. Appendix A lists all the
built-in functions and explains each of them in detail.

Joins

One of the major benefits of FLWORs is that they can easily join data from multiple
sources. For example, suppose you want to join information from your product cata-
log (catalog.xml) and your order (order.xml). You want a list of all the items in the
order, along with their number, name, and quantity.

The name comes from the product catalog, and the quantity comes from the order.
The product number appears in both input documents, so it is used to join the two
sources. Example 1-11 shows a FLWOR that performs this join.

Example 1-11. Joining multiple input documents

Query

for $item in doc("order.xml")//item
let $name := doc("catalog.xml")//product[number = $item/@num]/name
return <item num="{$item/@num}"

name="{Sname}"

quan="{$item/@quantity}"/>

Results

<item num="557" name="Fleece Pullover" quan="1"/>
<item num="563" name="Floppy Sun Hat" quan="1"/>
<item num="443" name="Deluxe Travel Bag" quan="2"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="557" name="Fleece Pullover" quan="1"/>

The for clause sets up an iteration through each item from the order. For each item,
the let clause goes to the product catalog and gets the name of the product. It does
this by finding the product element whose number child equals the items num
attribute, and selecting its name child. Because the FLWOR iterated six times, the
results contain one new item element for each of the six item elements in the order
document. Joins are covered in Chapter 6.

Aggregating and Grouping Values

One common use for XQuery is to summarize and group XML data. It is sometimes
useful to find the sum, average, or maximum of a sequence of values, grouped by a
particular value. For example, suppose you want to know the number of items con-
tained in an order, grouped by department. The query shown in Example 1-12
accomplishes this. It uses a group by clause to group the items by department, and

12 | Chapter 1:Introduction to XQuery

230

the sum function to calculate the totals of the quantity attribute values for the items
in each department.

Example 1-12. Aggregating values

Query

xquery version "3.0";

for $1 in doc("order.xml")//item

let $d := $i/@dept

group by $d

order by $d

return <department name="{$d}" totQuantity="{sum($i/@quantity)}"/>

Results

<department name="ACC" totQuantity="3"/>
<department name="MEN" totQuantity="2"/>
<department name="WMN" totQuantity="2"/>

Chapter 7 covers sorting, grouping, and aggregating values in detail. The version dec-
laration on the first line of this example is used to show that use of the group by
clause requires at least version 3.0 of XQuery.

Aggregating and Grouping Values | 13

231

VWant to
read more:

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10
All orders over $29.95 qualify for free shipping within the US.

It's also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

O'REILLY"

©2015 O'Reilly Media, Inc. The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. 15055

https://play.google.com/store/books?hl=en
http://www.amazon.com/
http://shop.oreilly.com/product/0636920035589.do

232

Contents

Introductionttt ittt XxXix
Listof ExXamplesttt ittt it s s st n st s nnn s n e XXXix

Part I: Foundations
Chapter 1: XSLT in Context 3
Whatls XSLT? ittt ittt ittt e st n s e st nnn s nnnnnsnnns 3
Why Version 2.0 e e e 5
A Scenario: Transforming MUSICo ottt e et ettt e e 5
HowDoes XSLT Transform XIMIL? it ittt st n s nnnns 7
XSLT and SQL: AN ANalOgY . ..o vttt e e e e e 8
XS LT PrOCES SO S . v v v ittt et e e e e e e e e e e e 9
A Simple XSLT Stylesheet ettt e e e e e e 10
AN XSLT 2.0 Stylesheet o e ettt e e e 19
ThePlaceof XSLTinthe XMLFamily ittt ittt nnns 21
XSLT and XSL Formatting Objectsot e e e e 22
] XSLT and XPath . . .o s 22
g XSLT and XML NamMESPaCES . . v v ottt ittt e ittt it e e et ettt et e aee e 23
§ €S I =T Vo 027 T 24
5 XSLT @nd XML SCREMES . . . v vttt et e et e et e e e e e e e e et 24
K XSLT @Nd XQUEIY .« v ettt et e e e e e e e e e 26
% TheHistoryof XSLttt itnnentsannansnnnnnnsnnns 26
% PrEni S OrY o e 26
p The First XSLPropOSalo v vttt ettt et e e ettt e et 28
8 SAXON ottt e e e e e 30
3 BEYONAXSLT 1.0 1ottt et e e ettt e ettt e 30
: CoNVErgence With XQUENY v v vttt ettt e e e e e e ettt ettt 31
i The Development of XSLT 2.0 and XPath 2.0ottt it et e et 32
g XSLT2.0asalanguagecuucineennennneenannncasnnannnnnns 33
% USE OFf XML SYNtaX . . oottt e e e e e e e e e e e e e 33
% NO Side EffeCtS . ..ottt e 34
© RUIE-BASE . .o\ttt e 35
Types Based on XML Schema i e e 38
A Two-Language System: XSLTand XPath et 39
LT 1T 11 11T T 40

Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-04-03 11:18:24.

233

Contents
Chapter 2: The XSLT Processing Model 41
XSLT:ASystemOverviewiiiieitnnnnenrnnnnnnssnnnnnssns 41
A SIMPIlified OVEIVIEW . . .ottt e et e e e e 41
Trees, NOt DOCUMENTS . .. oo et ettt e et e e 42
Different Output Formats i e e e 43
Multiple Inputs and OQULPUES oo ettt e e 44
The XDMTreeModelcciiiiieitnnnnnnrnnnnnssnnnnnnsnns 45
DAL T T 45
Completingthe UML Class Diagramo ii it ittt 56
DOCUMENT OFOr vttt it e e e e e e e e e e e e 57
Names and NameSPaCES . . .« v ittt e ittt e e e ettt e 58
IDS @nNd IDREFS . . ettt e e e e e 61
Charactersinthe DataModel i e e et 62
What Doesthe Tree Leave QUL ?.ottt e e e et 64
From Textual XMLtoaDataModel e e e 65
Controlling Serializationot e e e 67
The TransformationProcessttt nneernnnnnnsnns 67
InvoKing @ Transformationottt e e e e 67
Template RUIES e e e 68
PUSH PrOCESSING . o ottt e e e 74
Controlling Which NOdesS t0 PrOCESSo v ittt e et e et 76
VOB . .ot e e e e e e 78
Built-ln Template RUIES i e ettt e e e et e e 78
Conflict RESOIULION POLICY . . . v vttt e e e e e ettt e 79
3 ErrorHandlingc .ttt et e nnnasnansnnsnnns 80
3 Variables and Expressionsttt ittt aaas 80
g A= =1 0 1= 81
;f Param et erS . .o e e e 82
g EXPreSSIONS ..o e 82
é (0707 1 1= F P 84
E Temporary DOCUMENTS . .. oot e ettt et ettt e e e 85
;g”; SUMMIAIY - &+ v vttt it it me s ee s ee s aasansansansansansansnnsnnsns 88

3

g Chapter 3: Stylesheet Structure 89
s Changes N XSLT 2.0 ..ottt ttiseee et sasnnn e snnnnneeeennnnnns 90
g The Modular Structure ofaStylesheet 90
g The <xsl:stylesheet>Element 98
§ The <?xml-stylesheet?> ProcessinglInstruction 99
EmbeddedStylesheetscci ittt entrnnnnnsnnnnns 102

Kay, MicKddI. XSLT 2.0 and XPath 2.0 Programmer’s Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-04-03 11:18:24.

Tontents

Declarationsiiiiiiiiinnnnnnnnnnnnnnnns
XSLT-Defined Declarations it e e e e e
Implementor-Defined Declarations,
User-Defined Top-Level Elements i,

Instructionsii ittt it nnnnnnnns
XSLT INStrUCHiONS .. oo e e e e e
EXtension INStruCtionSottt e e e
Literal ResultElementst e
Attribute Value Templates i e e e

SimplifiedStylesheets i iininnnns

Writing Portable Stylesheets,
Conditional Compilationt e e e e
Version Compatibility e
EXtensibility oo

Whitespacettt i ittt ettt s et s n s n s
The Effect of Stripping Whitespace Nodes
Whitespace Nodes inthe Stylesheet.,
Solving Whitespace Problems i

SUMMAIY .+ vttt sttt s e m st nnn st nan st

Chapter 4: Stylesheets and Schemas

XML Schema: AnOverview¢¢¢ccceennnnn
Simple Type Definitions e e
Elements with Attributes and Simple Content.
Elements with Mixed Content,
Elements with Element-OnlyContent............
Defininga Type Hierarchyt e e
Substitution Groups oo e e

Declaring Typesin XSLT¢ciiiiiiinnnnnnnnns

Validating the SourceDocument

Validating the ResultDocument

Validating a TemporaryDocument

Validating IndividualElementsccivuunn

Validating Individual Attributes

The default-validation Attribute

ImportingSchemas¢iiiiiiiinnnnnnnns

Using xsiitypettt essnnnensnnnnnnsns

Nillability0ttt ittt s s s nnnnnsns

SUMMAIY .+ v vttt ittt s e e st s s a st n s an st nn e

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-04-03 11:18:24.

Xiii

235

Contents

Chapter 5: Types 185
WhatlsaTypeSystem?i ittt enrnnnnnnssnnnnnssns 185
Changesin2.0......... ittt nnnenrtnnnnnssnnnnnssennnnssnnnns 186
SEQUENCES .+ v v ittt v nmm e na e e s 187
AtomicValuesttt et it nnentnnnnnesannnnsssnnnnsssns 189
AtomicTypes i i i e e e e e e e e e 191
The Major ATOMIC TYPES . . oottt e e e e e e e e et e 193
The Minor ATOMIC TYPES . . oot e e e e et e e 206
Derived NUMEIC TYPES . . v ottt e i et e e e e e e e e e e e e et e 210
Derived StNg TYPES . . o i ittt et e e e e 213
Untyped AtOmMIC ValUeso e e e 215
xS:NMTOKENS, xs:IDREFS, and xs:ENTITIES e e e 217
SchemaTypesand XPathTypesiiiiiiiinnnenrnnnnnnsnns 217
TheTypeMatchingRulesttt nnneartrnnnnnsnns 219
Static and Dynamic TypeCheckingttt eertnnnnnnrnns 221
LT] 1] 11T T 224

Part II: XSLT and XPath Reference
Chapter 6: XSLT Elements 227
xslanalyze-stringt i i i e e e 230
xslapply-imports i i i e e e e e 237
5 xsl:applytemplates 240
§ xshattribute ittt i e 254
b xshattribute-setottt i i i i i i i e 266
E” xsl:call-templatettt 271
5 XS:Character-mapccuuiiemnna e 280
S XSECRO0SE .. ittt 282
8 XSECOMMENE . . .ottt ittt i 285
g D] o0 T . 287
5 XSHCOPY-Of ..ttt i 292
S xslidecimalformatttt it 298
g XshidocUumentciiiitiit ittt e e e e 303
g xskelement i it i i i r st r s 306
D 1|7 T 316
§” xsl:for-each i i i i i s e s 322
8 xsl:for-each-groupttt 326
xshifunction i i i i e i s e a e 344
] 353

Kay, MicKddV. XSLT 2.0 and XPath 2.0 Programmer’s Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-04-03 11:18:24.

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Tontents

xskiimport i
xsl:import-schema
xskiincludeiuunn.
xshkeyttt e
xsl:matching-substring

xsl:message

xsl:namespace
xsl:namespace-alias
xsl:next-match
xsl:non-matching-substring
xsltnumber

xsl:otherwise

xsloutput
xsl:output-character
xshparamc.ccinnnrnnnns
xsl:perform-sort
xsl:preserve-space
xsl:processing-instruction
xsl:result-document

xsl:sequence

xslisort0iiiiiiiiii e
xsl:strip-space
xsl:stylesheet

xsl:template

xslitext it i i e

xsl:transform

xslvalueof
xslvariable
xskkwhen
xsl:with-param
SumMMaryocv v n st

Chapter 7: XPath Fundamentals
Notation
Where to Start
Expressions.ccouiennnnns

Examples
Lexical Constructs

Comments

Numeric Literals

Created from pitt-ebooks on 2018-04-03 11:18:24.

XV

237

Contents
StHNG Literals . ..o e e 532
AN = 01 534
(00 =T 7= (] = 537
Primary EXpressionst ii ittt i s e 539
EXAMDIES oottt e e e e 540
Variable Referencesttt ininnneertnnnnnessnnnnnsnns 540
USBE . h ittt e e e e e 540
=100 1= 541
Parenthesized EXpressionsi ittt nnnnesrnnnnnssnnnns 542
Changes in XPath 2.0ot e e e e e e 543
ContextIltemEXpressionsttt et nnneesnnnnnnsnnnns 543
Changes in XPath 2.0o i e e e e 544
US B8 .ttt ittt e e e e e e e 544
FunctionCallsci ittt iiinneetrnnnnessnnnnnssnnnns 544
Identifying the Functiontobe Called i e 545
Converting the Arguments andthe Result i e 547
Changes in XPath 2.0t e e e e e 549
Side EffeCtS . . oo e e e 549
EXAMDIES oot e e e e 550
Conditional EXpressionscitiiiinneertnnnnessnnnnnssnnnns 551
Changes in XPath 2.0ot e e e e e e et 552
EXAMDIES oot e e e 553
The XPath EvaluationContext ittt e e e 553
The Static Contexto e 554
_ The Dynamic Context oo 563
g SUMMAIY .« v v v v vt vttt ettt et e s s e e s s sssnnsessssssenseeseeneneenns 568
£ Chapter 8: XPath: Operators on ltems 571

<

g ArithmeticOperators ittt iinnneertnnnnnnsnns 571
8 Y21 €= G 571
@ TYPE PromMOtioN . . .ot e 572
& ChangeS N XPAth 2.0 . . . oo v e et e e e e e e 573
g 517512 S 573
£ Arithmetic USiNg NUMDErS e et 574
5 Examples of Numeric Arithmetic i e 576
S Arithmetic USINg DUFAtIONSttt ettt et e e e e e e ettt 577
5 ValueComparisonsiiiiiiininnnrrennnnnrrneannnnnns 581
g Permitted OPerand TYPES« oo v vt et e e e e e e e e e e e e e e e 582
Type Checking for Value CompariSoNnsttt e e e e e 586
Examples of Value CompariSonso vi ettt et et it et e e e 587

Kay, Mid&i XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-04-03 11:18:24.

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Tontents

GeneralComparisonsc.c:ivuueerrnnnanssnnnnns
Changesin XPath 2.0 i e e e
Rules for General CompariSoNnso vttt i i e e e
Existential Comparisont e e
Examples of General CompariSoNsttt i ittt e i

NodeComparisonsc.cuneeennnnenrnnnnnnsas
The dsrOpPerator . ..o e e e e
The operators «<<» and «<<» . i e e e e
Changesin XPath 2.0 it e e

Boolean EXpressionsccieitrnnnaannnnnnnnan
Shortcut Semantics i e e
EXamples ... e e

SUMMAIY .+ vttt sttt s e m st nnn st nan st

Examplesof PathExpressionsttt it i v nnnns
ChangesinXPath2.0¢iiiiitnnnennrnnnnns
Document OrderandDuplicatescvvuuernn
TheBinary«/»Operatorc ittt nnnnrrnnns

Examples of the Binary «/» Operator ...
Associativity of the «/» Operator
AXiISStepPSt ittt i i i e e e e

Predicates . . .ot e e
Abbreviated AXiS STEPS. . . .ottt e
Rooted PathExpressionsciiiiinnnnnnnns
1=
Examplesof RootedPaths
The «/» Abbreviation it nnnn
Examples USiNg «//» v e e e e
Comparing «//» with «/descendant::»cciiiiiiiinnnnnnnn
CombiningSetsofNodesciiiiinnnnnn.
1=

Created from pitt-ebooks on 2018-04-03 11:18:24.

XVii

239

Contents
= 18] 0] 1= 630
USaE .ttt ittt e e e 630
Set Intersection and Differencein XPath 1.0 it 631
Sets Of AtOMIC ValUBSt i e e e e e e 631
SUMMAIY & & v vt s ittt s e e st s s e st s s n st annnsssssnnnnsssnnsnsssss 632
Chapter 10: XPath: Sequence Expressions 633
TheCommaOperatorcciiiineertnnnnnnrnnnnnsssnnnnsssns 634
= 1010 1= 635
Numeric Ranges: The «torOperatorcciiiiiiiirnnnnnrrnnnns 636
EXamMDIES oot e e 637
FilterEXpressionsiiiiieetnnnnnesrnnnnnssnnnnnssnnnns 638
= 1010 1= 640
The «for» EXpression ii i ittt nneesnnnnessnnnnnsssnnnnsssns 640
MapPINg @ SEQUENCE . . vt vttt et et e et et e e e e 641
= 1010 1= 642
The Context Item in a «for EXPressionttt e e e e e e 642
Combining MUItIplE SEQUENCES . . .ttt e e et e et 643
EXamMlE .o e e e 644
Simple MappingExpressions 644
The «<some» and «every» Expressions ceeennn- 646
EXamMIES oot e e e 648
Quantificationand the «<=» Operator i i et e e e e 649
Errors in «<some» and «every» EXpresSionSo oot e 649
3 SUMMANY ittt ittt it i i e e m i mm e 651
; Chapter 11: XPath: Type Expressions 653
§ Converting AtomicValuesttt ittt a e s nnrn s 654
g Converting between Primitive Types ot 656
% Converting between Derived TYPES . .ot ittt e e e et et et 664
p Sequence Type DesCHiPtors v i v ittt it ee st e st eanssannsannnenns 668
§ Matching ATOmMIC ValUesot i e e e 669
2 Matching NOdES i i e e e 670
é Matching Elements and Attributes. e e 672
i The <instanceof»Operatort nneernnnnnnsnns 677
g The ctreat as» OPerator oo vt v it ieee et innnnnneessnnnnnnesennns 678
£ SUMMANY . & v vt st ittt s e e st s s e st s s n s et aannssssssnnnsssnnnnsssss 680
S Chapter 12: XSLT Patterns 681
Patternsand Expressionsttt nnnnnnnnnnnnnnnnnnnns 681
Changesin XSLT 2.0 ¢ttt nnnnnnnnnnnnnnnnnnnnnnnnnns 682

Kay, Mid&ii}iSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-04-03 11:18:24.

Contents

The Formal Definition ittt tinnnanrnnns 683

Applying the Definition in Practice i e et 684

An Algorithm for Matching Patterns i e e e 685

Patterns Containing Predicatest e e e e 685
AninformalDefinition i i i i s r e 685
ConflictResolution ¢ttt nnnarrnnnnnnsnnns 686

Matching ParentlessNodest nernnnnnnns 688
TheSyntaxofPatterns ittt e st nnnnnsnns 689

= 1T 1 1 689

Path P at e N . . oo e e e 690
RelativePathPattern e e e e 693

= LU=] (= o 694

APt N .« . e 704

SUMMANY .« & v v i it ittt s e st s s n e st nn e sannssssnnnsnsssnnnsnssssnns 708

Chapter 13: The Function Library 709
AWordaboutNaming ittt it sttt s e a e 710
FunctionsbyCategoryt nnnnnnnnnnnnnnnnnns 710

Notationttt e e st annnn s annnnssnnnnns 712

CodeSamplesiiiiiiinnnnnnnnnnnnnnssnssssnnnnnnssssss 714
FunctionDefinitions ittt ittt n s annnns 714

A0S e e e e e e e 714
adjust-date-to-timezone, adjust-dateTime-to-timezone, adjust-time-to-timezone 715

AV e it e e e e e e 718

k DS E-UTT v v vt e e e e 719
3 DOOIBAN . . . ettt ettt e e e 721
g CBIINE + e e et e e e e 723
= COAEPOINT-EAUAL . v ottt ettt et et e et e e e e e 724
g COAEPOINTSHO-STING . .\ ottt e e e e 725
é COllBCtiON . . . e 726
g L0 21010 T= = 727
g CONCAL « v v vt e et e e e e e e e e e e e 729
§ CONMEAINS o 730
§ o0 LU o | 733
g LoTUT 1= 2 LS 734
g current-date, current-dateTime, current-time i 738
o CUITEINEEIOUD .+« v v vt vttt et et ettt 739
§” CUITENT-BrOUPING-KBY . . . o ottt e e e e e e e et e e e e e e e e 740
8 CUITENETIME o v ettt ettt et e et e e e e e e e e e 741
6 = = 741

AatETIMIE L e e e e e e 743

day-from-date, day-from-dateTime it e e e e 744

Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central, XiX

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-04-03 11:18:24.

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

241

Contents
days-from-duration e 745
AEEP-EAUAI . .t e e e e 745
default-Collation i e e 748
AIStiNCIVAlUES . . . i e e e 749
doc,doc-available e 750
L0 10T 1 1 = 0 754
Lo [0 Y1 1 1 1= 0 U 764
element-available e e 764
B D Y oot e 770
L= a0 Yo 1= o 110 [P 771
ENAS-WItN . L L e e e 773
L] (0 774
ESCAPE-NIMI-UNT . . oo e e e 775
EXACTIY-0NE . .o 77
EXISES . o i e e e e 778
721 57 779
(0 o) 779
format-date, format-dateTime, formattime 781
format-NUMbEr e e 788
format-time . .. e e 792
function-available e e 792
Lo LS L= = T 797
hours-from-dateTime, hours-from-time i e, 800
hours-from-duration e e e 801
I L e e e e 802
o =3 804
IMPICITIMEZONEo e e e e 806
INAEX-0F . L e e e 807
IN-SCOPE-PI e IXES . . o vttt e e e 808
INSEIDETOrE . .o e e e 810
0 811
KBY « vttt e e e e 812
=T = 819
T 820
o o= 0= T 1= 824
local-name-from-QNamMeE e e e 826
10T =T o= 1T = 827
MaAlCNES .. e e e 828
X, NN ottt et ettt e e e e 830
0] 832
minutes-from-dateTime, minutes-from-time 832
MINUEtES-TroM-AUrationt e e e 832

Kay, MicK2€l. XSLT 2.0 and XPath 2.0 Programmer’s Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-04-03 11:18:24.

Contents

MINUEES-TrOM-tIME . .. e e 833

month-from-date, month-from-dateTime i i i eeeee e 833
MONthS-froM-AdUration e e e e e e 834

1= 102 = 835

NAMESPACE-UN v v v vt ettt ettt e ettt e e e e e e e e e 837
NaMESPaCE-UN-fOr-PrefiX . . ot e e e e 839
namespace-Uri-from-QName e e 841

11T o 842

NOAE-NAIMIE . .ottt ittt e e e e e e 843

NOMAlIZE-SPACE . . o ittt et ettt e e e e 845

NOIMaAliZEe-UNICOdE i ettt et e e e e e et e e e 847

0) 850

0 o= 851

Lo T TS 0] /210 853

POSITION & et e e e 854

prefix-from-QName e e e 857

ONAME . e e e 858

(=702 = o 11 860

1T 00101 861

1Y 0] = T 862

FE€SOIVE-QNAME . . .o e e e 864

FESO VUl .« . ottt e e e e e 867

1SN £ 869

1070 1 870

10T T 870

k FOUN-NAIft0-BVEN . . .ot e e e e 872
g seconds-from-dateTime, seconds-from-time i 873
% seconds-from-duration e e 874
= SECONAS-IOMAIME . . o ettt ettt et e e e e e 875
§ SEAM S WItN . . oot e e 875
g SEAtICDASE-UI .+« v it ettt 876
g SHINE .« e e et e e e e e e e 877
w SHINETOIN v e e e e e e e e e e e e e e e 879
2 SHIHNG-lENGIN L o e e 880
§ STHNG-10-COUEPOINTS . . .ottt e e e e 881
§ SUDSEOUENCE . v vttt ettt ettt e e et 882
g SUDSHIING . o\ ettt e e 883
§ SUDSHING-after . .o e 885
§ SUDSHING-DEfOre . o e 887
§ £ 2 889
LS A1 (ST T 0 0] o= o 890
timezone-from-date, timezone-from-dateTime, timezone-fromtime..................... 893

Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central, XXl

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-04-03 11:18:24.

243

Contents
TOKEBNIZE . . o o e e e 894
L= 1< 896
rANS At .. o e e e 897
UG o e e e e e 899
type-available e 899
(U0 0 == 901
unparsed-entity-public-id, unparsed-entity-uri i e 902
unparsed-text, unparsed-text-available i e 904
(U T 0= o= 1T 910
year-from-date, year-from-dateTime e 911
years-from-duration e 911
= (0 210 0 1 1= 912
LT T 11 11T T 913
Chapter 14: Regular Expressions 915
BranchesandPiecesiiiiiiiiinnnnnnnnnnnnnnnnnnnnnnns 916
Quantifiers ittt ittt ennennennssnnennsnnsnnsnnnnsnnnnns 916
£ 0 1 1T 917
SUbEXPressSioNSttt 918
Back-Referencesciiiiiiinnnnnnnnnnnnsssssnnnnnnnnnns 918
CharacterGroups ittt ittt s sttt st s s s nnnnnnnn 919
CharacterRanges ittt nnnnnnnnnnsnnnnnnnnnnnnnns 919
CharacterClassEscapesiiiiiiiinnnnnnnnnnnnnnnnnnnnns 920
CharacterBlocks ¢ttt ittt ittt snnnnnnnnnnns 922
3 CharacterCategoriesttt ittt ittt nnnnnnnnnnnns 924
3 Flags .o vt iii ettt eee ettt e a e e a e 925
g TRE € FIAG .+« o e v e e et e e e e e e e e e e 925
% The amy flag . . .o e 926
g The «Sr flag . .o e 926
g TRE 0 FIBE - oo e 926
g DisallowedConstructscciiiiiiii it nnsrnnnnnsnnnnns 927
£ SUMMAIY - & v v ittt ittt e st ea st sasssnnnssanssnennssannsnnnnsnns 927
3
% Chapter 15: Serialization 929
S TheXMLOUtpUtMethodeuuueineienieieeieanaeananenas 929
g The HTMLOutputMethod it ittt nnns 936
5 The XHTMLOutputMethod ittt e nnns 939
g The TextOutput Methodo it ittt ittt ettt enn e nnnsennnenns 940

Kay, Mid(*iiXSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-04-03 11:18:24.

Contents

Using the <xsl:output>declaration................. ... 940
CharacterMapsttt ittt e st s s a e st na e s nnnnnsnnns 941
USBBE oot e e e e e 942
Choosing Characters to Map ot it e e ettt 942
Limitations of Character Mapsottt e e e e et e e 944
DisableOutput Escapingttt i ittt st s s s s s 945
Reasons to Disable Qutput Escapingt e et 945
Why disable-output-escaping Is Deprecated i 946
Using disable-output-escapingto Wrap HTMLin CDATA oot 947
Character Maps as a Substitute for disable-output-escaping oo, 948
SUMMaANY .« & vt i it ittt s e st s s s e st s anasssannnesssnnnsnssssnnsnssssnns 949

Part 111: Exploitation

Chapter 16: Extensibility 953

What Vendor Extensions Are Allowed?cci it nnnnnrnnns 954
ExtensionFunctions ittt et s s 955

When Are Extension Functions Needed?t et 955

When Are Extension Functions Not Needed? i, 956

Calling EXtension FUNCHIONS . . .ottt e et et e e aas 956

What Language Is Best?. oo e e e e e 957

Client-Side SCripto e e e e 957

Binding EXtension FUNCLIONS oottt e e e e e e 957

5 XPath Trees and the DOM ettt e e e e e e e e 963
§ Calling External Functions within @aLoop oot e e e e e e 965
b Functions with Uncontrolled Side Effects i 967
E” Keeping Extensions Portable i nnnnnnnns 970
5 SUMMANY .+« + s e e v e e e et e e e e e e e e e e aan e e aan e ssnnessneennneennn 971
] Chapter 17: Stylesheet Design Patterns 973
;5: Fill-inthe-Blanks Stylesheets nnnnnnnns 973
3 Navigational Stylesheetsciuiuiiinrnrnrnnnenenenennn. 976
Z Rule-Based Stylesheetsc.oiiiiinnneernnnnnneeeennnnnnens 980
i ComputationalStylesheets ittt ittt e nneernnns 985
g Programming without Assignment Statements i i 985
% So Why Are They Called Variables?t e et 989
% Avoiding Assignment Statementsot e 989
© SUMMaAIY . . . ittt ittt it et te e teaeenesssneenesanaesnanennesnnanennsns 1000
Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central, XX|||

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-04-03 11:18:24.

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

245

Contents
Chapter 18: Case Study: XMLSpec 1001
Formatting the XML Specification it nnns 1002
Prefacettt ittt st i e 1004
Creatingthe HTMLOutlinettt etrtnnnnnssnnnns 1008
Formattingthe DocumentHeader ¢ ittt nnnns 1012
Creatingthe TableofContentsttt nnnnn 1019
CreatingSectionHeadersttt enrtnnnnnnsnnnns 1023
Formattingthe Text i i ittt n st nnnns 1024
ProducingListsciiiiiiiiiiinneernnnnnnssnnnnnssnnnns 1028
MakingCross-Referencesttt eetntnnnnnssnnnnnnsnnnns 1029
Setting Outthe ProductionRules ittt nnnnnrnnn 1033
OverlayStylesheets ittt nneesnnnnnnsnnnns 1041
IS PEC. XSl Lot e e e e e 1041
RECXMILXS . ettt e e e 1044
Stylesheets for Other Specifications i iiannn 1044
S 7€ 1045
XSO XS e e e e e 1046
FUNCPIOTO. XS] . o oo e e e e e e 1046
XS QUETY. XS ottt e 1047
XIS P C. XS o vttt e e e e 1047
SUMMANY - & 4 vt s ittt s e e st s s e st s s s st s annssssnnsnsssnnnnsssss 1047
Chapter 19: Case Study: A Family Tree 1049
ModelingaFamilyTreettt it ittt st s st s nnnn s nnnns 1050
The GEDCOM Data Model i e e e e e 1050
Creating a Schemafor GEDCOM B.0ottt e et e et e e 1053
The GEDCOM 6.0 SChema . ..ot v it e et et e e e e e 1054
CreatingaDataFile it iiitisrrnnnnnnnnnnns 1058
Converting GEDCOM Files to XML . ..ottt e e e et e e 1059
Converting from GEDCOM 5.5 10 6.0 oottt e e e et 1063
Displayingthe FamilyTreeData nnnnnnns 1072
The Stylesheet e e e 1073
PULLINg L TOgether ..o e e e e e e e 1085
SUMMANY . . . i ittt ittt i i e e m s s ss s s n s nnnnns 1098
Chapter 20: Case Study: Knight’s Tour 1099
TheProblemttt st s s s nnnnnnnnns 1099
TheAlgorithmt i ittt n s nnsnnnns 1100
PlacingtheKnight i i it a s nnnns 1104
DisplayingtheFinalBoard ittt et rnnnnnnsnnnns 1105

Kay, MicK€IWSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-04-03 11:18:24.

Contents

FindingtheRoute it i i ittt s e snannnnns 1106
Finding the Possible MOVES e 1107
Trying the POSSIDIE MOVESo i e e e 1109
Selectingthe BeSt MOVEttt e e e e 1111

Runningthe Stylesheet. i i ittt nn e 1112

Observationsc.ii i inennnernnennesnnnsnnsnnnsnns 1112

SUMMANY .« & v ittt ittt s e st s s s e st s nn et ansnssssnnnsnsssnnnnssssnns 1113

Part IV: Appendices

WhitespaceandComments.ttt nneetnnnnnntnnnnnnsnnns 1118

Tokens ittt ittt et e e s s s s 1118
SyntaxProductionsiiiiii ittt i e e 1119
OperatorPrecedencettt nnnnansnsnsnsnnns 1122

Appendix B: Error Codes 1123
FunctionsandOperators (FO)iiiiiiiinnnnnnnnnnnnnnnnns 1124

XPathErrors (XP) i i i i i it i i ittt it it ettt st s s s s s s s 1126

XSLTEmors (XT) .. v vi i it ittt n st n e s s nnnansnnnnnnsnnnnnssnnns 1127

. fix C: Bacl | C tibilit 1139

3 Stage 1: Backward-compatibilityMode i nnnn 1140
3 Deprecated FaCilities oottt e e e 1140
2 EIrOr HAaNAING . v e 1140
;f COMPANNG STNES . . vttt e e e e e 1141
g Numeric Formats e 1141
g Other XPath CANEES vttt ettt ettt ettt ettt 1142
g Serialization ChaNEES oo vttt et e et e e e e e e 1142
;g”; Stage 2: Settingversion=""2.0""ttt e 1142
2 The FirstNode Rule e 1142
§ Type Checking of FUNCLION ArgUMENTS oo ot et it e s 1143
§ CompParison OPeratorS . . oottt i et e e e e e 1143
g ArENMETIC . . e e e e e e 1143
o The EMPLY SEQUENCE . . v vt ettt ettt et e e et e e e e e e e e e e e e 1143
§” Error Semantics for «and» and «0mo e e e e 1144
8 Other XSLT DIfferencesottt 1144
Stage3:AddingaSchemaiiiiiiiitnnnnsrtnnnnnnrnnns 1145
LT T 11 11 T T 1145

Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central, XXV

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-04-03 11:18:24.

Contents

247

O ECES et e
IXMLDOMDocument and IXMLDOMDocument2,
IXMLDOMNOGE . . vttt i e et e et et e ettt et e e e e e
IXMLDOMNOGAELISt .« . vttt it et et ettt et e e e e e
IXMLDOMPArSEEIrOr . . . e ettt e e
IXMLDOMSEleCtion e e e e
DS T I8 0 T ==Y oY
IXSLTemplate e e
PUtting it Together ... i e e e e e
RESIHCHIONS . . . oo e e
System. Xml. e e e
XPathDoCUMENT e e
XMINOGE ..o e e e
IXPathNavigable e et et e e
XPathNaVIigator v oo e e e e e e
XS TranS oM . . e e e
SUMMANY ittt i it i i i e e n s s s s s s s

Appendix E: JAXP: The Java API for Transformation

TheJAXPParser APlttt et s nnnnnnnnnns
JAXP SUPPOIt fOr SAX e e
JAXP SUpport for DOM ..o e e e e

The JAXP Transformation APl it nrnnn

Examples of JAXP Transformations i iiiiinnnnns
Example 1: Transformation Using Files i
Example 2: Supplying Parameters and Output Properties
Example 3: Holding Documents in Memoryt
Example 4: Using the <?xml-stylesheet?> Processing Instruction
Example 5: A SAX PIpeline e e e e

£ T 1] 11T T

Appendix F: Saxon

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

Kay, MicK¥NMXSLT 2.0 and XPath 2.0 Programmer’s Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-04-03 11:18:24.

Using SaxonfromtheCommandLineciiiiinnnnnn
Using Saxon from aJava Applicationc0iuu..
Using Saxonvia JAXP Interfaces i e
The sOapilnterface. e e
Using Saxonfroma .NET Application
SaxonTreeModels ittt eennnnnnnnns

Contents

Extensibility0iiiiiii ittt it st e 1205
Writing Extension FunctionsinJava. i e 1206
Writing Extension Functions under NET i e 1206
COllatiONS it e e e 1207
EXtensionsiiiiiiinnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 1208
Serialization EXIENSIONS . . .o e e 1208
EXtension AttribULES e 1209
EXtension INSTrUCTIONS i e e e e 1209
EXtenSiON FUNCHIONS et e e e e 1209
Theevaluate()Extension ittt nnnnsrnnnnnnsnns 1210
SUMMANY .« & v vttt ittt s e st s s s ne st s nnasssannssssnnsnsssnnnnssssnns 1214
Appendix G: Altova 1215
Running fromwithin XMLSpy ittt i i i i i s s st s s n e e ns 1215
Conformancei ittt nnnnnnnnnnnnnnnnnnnnnnnnnnnsnssss 1216
ExtensionsandExtensibility ittt 1217
TheCommandLinelnterface i ittt ittt e s s s aanns 1217
Usingthe APl ittt ss s snnnnnnnnnnnnnnnns 1218
ThE COM AP . ettt e e e e e e e e e 1218
TN JaVa APl . ot e 1219
TE INET APl ettt e e e e e e 1220
£ T 1] 1111 = T 1220
Appendix H: Glossary 1221
INAEX « e e e e ettt et e e e e e e 1233
%
3
2
%
8
Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central, XXVii

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-04-03 11:18:24.

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

249

The Function Library

I've arranged the functions in alphabetical order (combining the XPath-defined and XSLT-defined func-
tions into a single sequence), so you can find a function quickly if you know what you're looking for.
However, in case you only know the general area you are interested in, you may find the classification
that follows in the section Functions by Category useful. This is followed by a section called Notation, which
describes the notation used for function specifications in this chapter. The rest of the chapter is taken up
with the functions themselves, in alphabetical order.

A Word about Naming

Function names such as current-dateTime () seem very strange when you first come across them. Why
the mixture of camelCasing and hyphenation? The reason they arise is that XPath 1.0 decided to use
hyphenated lower-case names for all functions, while XML Schema decided to use camelCase for the
names of built-in types. Wherever the XPath 2.0 function library uses a schema-defined type name as part
of a function name, it therefore uses the camelCase type name as a single word within the hyphenated
function name.

So it may be madness, but there is method in it!

Throughout this book, I write these function names without a namespace prefix. In fact the functions are
defined to be within the namespace http: //www.w3.0rg/2005/xpath-functions, which is often referred
to using the namespace prefix «fn». (Earlier drafts of the specification used different namespaces, which
you may still encounter). In XSLT this is the default namespace for function names, so you will never
need to write them with a namespace prefix. I have therefore omitted the prefix when referring to the
names in this book. In the W3 C specifications, however, you will often see the functions referred to by
names such as fn:position() or fn:count ().

Functions by Category

Any attempt to classify functions is bound to be arbitrary, but I'll attempt it anyway. A few functions
appear in more than one category. The number after each function is a page reference to the entry where
the function is described. Functions marked t are available in XSLT only (that is, they are not available
when executing freestanding XPath expressions or in XQuery).

Boolean Functions
boolean () 721, false() 779, not () 850, true () 899.

Numeric Functions

abs () 714, avg () 718, ceiling () 723, floor () 779, tformat-number () 788, max () 830, min () 830,
number () 851, round () 870, round-half-to-even () 872, sum() 889.

String Functions

codepoints-to-string() 725, compare () 727, concat () 729, contains () 730, ends-with() 773,
lower-case() 827, matches () 828, normalize-space () 845, normalize-unicode () 847, replace() 862,
starts-with() 875, string() 877, string-join() 879, string-length () 880, string-to-codepoints ()
881, substring () 883, substring-after () 885, substring- before() 887, tokenize() 894,
upper-case () 910.

Kay, Mic%a.< 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-03-29 08:01:33.

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

Functions be&ategory

Date and Time Functions

adjust-date-to-timezone () 715, adjust-dateTime-to-timezone () 715, adjust-time-to-timezone ()
715, current-date () 738, current-dateTime () 738, current-time () 738, day-from-date () 744,
day-from-dateTime () 744, tformat-date() 781, tformat-dateTime() 781, tformat-time() 781,
hours-from-dateTime () 800, hours-from-time () 800, implicit-timezone () 806, minutes-from-
dateTime () 832, minutes-from-time () 832, month-from-date () 833, month-from-dateTime () 833,
seconds-from-dateTime () 873, seconds-from-time() 873, timezone-from-date() 893,
timezone-from-dateTime () 893, timezone-from-time() 893, year-from-date() 911,
year-from-dateTime () 911.

Duration Functions

days-from-duration() 745, hours-from-duration() 801, minutes-from-duration() 832,
months-from-duration () 834, seconds-from-duration () 874, years-from-duration() 911.

Aggregation Functions
avg () 718, count () 733, max () 830, min () 830, sum() 889.

Functions on URIs

base-uri() 719, collection() 726, doc () 750, doc-available() 750, document-uri () 764,
encode-for-uri () 771, escape-html-uri() 775, iri-to-uri() 811, resolve-uri() 867,
static-base-uri () 876, tunparsed-text () 904, tunparsed-text-available () 904.

Functions on QNames

local-name-from-QName () 826, namespace-uri-from-QName () 841, node-name () 843,
prefix-from-QName () 857, QName () 858, resolve-QName () 864.

Functions on Sequences

count () 733, deep-equal () 745, distinct-values () 749, empty () 770, exists () 778, index-of () 807,
insert-before() 810, remove () 861, subsequence () 882, unordered() 901.

Functions That Return Properties of Nodes

base-uri () 719, data() 741, document-uri () 764, tgenerate-id() 797, in-scope-prefixes () 808,
lang () 819, local-name () 824, name () 835, namespace-uri () 837, namespace-uri-for-prefix() 839,
nilled() 842, node-name () 843, root () 870, string () 877, tunparsed-entity-public-id() 902,
tunparsed-entity-uri () 902.

Functions That Find Nodes
collection() 726, doc () 750, tdocument () 754, id () 802, idref () 804, tkey () 812, root () 870.

Functions That Return Context Information

base-uri () 719, collection() 726, tcurrent () 734, current-date () 738, current-dateTime () 738,
tcurrent-group () 739, tcurrent-grouping-key () 740, current-time () 738, default-collation|()
748, doc () 750, implicit-timezone() 806, last () 820, position () 854, tregex-group () 860.

Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central, 711

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-03-29 08:01:43.

Aleiqiq uonound ayyl -
w

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

251

The Function Library

Diagnostic Functions
error () 774, trace () 896.

Functions That Return Information about the XSLT Environment

telement-available() 764, tfunction-available() 792, tsystem-property ()890,
ttype-available () 899

Functions That Assert a Static Type

exactly-one() 777, one-or-more () 853, zero-or-one () 912.

Notation

For each function (or for a closely related group of functions) there is an alphabetical entry in this chapter
containing the following information:

3 The name of the function

0 A summary of the purpose of the function, often with a quick example

Q Changes in 2.0. In cases where a function was present in XSLT 1.0 or XPath 1.0, the entry for the
function in this chapter contains a section that describes any changes in behavior introduced
in the 2.0 version of the specs. If there are no changes, this section will say so. In cases where the
function is new in XPath 2.0 or XSLT 2.0, this section is omitted.

Q The function signature, described below

(]

A section entitled Effect, which describes in fairly formal terms what the function does

O Where appropriate, a section entitled Usage, which give advice on how to make best use of
the function

O Asetof simple examples showing the function in action

QO Cross-references to other related information in this book

Technically, a function in XPath is identified by its name and arity (number of arguments). This means
that there is no formal relationship between the function substring () with two arguments and the
function substring () with three arguments. However, the standard function library has been designed
so that in cases like this where there are two functions with different arity, the functions in practice have
a close relationship, and it is generally easier to think of them as representing one function with one or
more of the arguments being optional. So this is how I have presented them.

The signatures of functions are defined with a table like the one that follows:

Argument Type Meaning

input xs:string? The containing string

start xs:double The position in the containing string of ...
length xs:double The number of characters to be included ...
(optional)

Result xs:string The required substring . . .

Kay, Mic%a.%LT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,

http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.

Created from pitt-ebooks on 2018-03-29 08:01:52.

*Rotation

The first column here gives a conventional name for the argument (or “Result” to label the row that
describes the result of the function). Arguments to XPath functions are supplied by position, not by name,
so the name given here is arbitrary; it is provided only to allow the argument to be referred to within the
descriptive text. The text ““(optional)’”” after the name of an argument indicates that this argument does not
need to be supplied; in this case, this means that there is one version of the function with two arguments,
and another version with three.

The second column gives the required type of the argument. The notation is that of the SequenceType
syntax in XPath, introduced in Chapter 11. This consists of an item type followed optionally by an occur-
rence indicator («?», «*», or «+»). The item type is either the name of a built-in atomic type such as
xs:integer or xs:string, or one of the following:

Item type Meaning

item() Any item (either a node or an atomic value)

node () Any node

element () Any element node

xs:anyAtomicType Any atomic value

Numeric An xs:double, xs:float, xs:decimal, or xs:integer

The occurrence indicator, if it is present, is either «?» to indicate that the supplied argument can contain
zero or one items of the specified item type, or «*» to indicate that it can be a sequence of zero or more
items of the specified item type. (The occurrence indicator «+», meaning one or more, is not used in any
of the standard functions.)

Note the difference between an argument that is optional, and an argument that has an occurrence indica-
tor of «?». When the argument is optional, it can be omitted from the function call. When the occurrence
indicator is «?», the value must be supplied, but the empty sequence « () » is an acceptable value for the
argument.

Many functions follow the convention of allowing an empty sequence for the first argument, or for
subsequent arguments that play a similar role to the first argument, and returning an empty sequence
if any of these arguments is an empty sequence. This is designed to make these functions easier to use
in predicates. However, this is only a convention, and it is not followed universally. Most of the string
functions instead treat an empty sequence the same way as a zero-length string.

When these functions are called, the supplied arguments are converted to the required type in the
standard way defined by the XPath 2.0 function calling mechanism. The details of this depend on
whether XPath 1.0 backward compatibility is activated or not. In XSLT this depends on the value of
the [xsl:]version attribute in the stylesheet, as follows:

0 In 2.0 mode, the standard conversion rules apply. These rules appear in Chapter 6 on page 505,
under the heading Converting the Arguments and the Result. They permit only the following kinds
of conversion:

d Atomization of nodes to extract their numeric values

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

Q Promotion of numeric values to a different numeric type; for example, xs: integer
to xs:double

O Promotion of xs:anyURI values to xs:string

Kay, Michael. XSLT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central, 713
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-03-29 08:01:52.

Aleiqi] uonound ayj

253

The Function Library

Q Casting of a value of type xs:untypedAtomic to the required type. Such values generally
arise by extracting the content of a node that has not been schema-validated. The rules for
casting from xs :untypedAtomic values to values of other types are essentially the rules
defined in XML Schema for conversion from the lexical space of the type to the value space:
more details are given in Chapter 11 (see Converting from string on page 663).

Q In 1.0 mode, two additional conversions are allowed:

Q If the required type is xs:string or xs:double (perhaps with an occurrence indicator
of «?»), then the first value in the supplied sequence is converted to the required type using
the string () or number () function as appropriate, and other values in the sequence are
discarded.

Q If the required type is node () or item() (perhaps with an occurrence indicator of «?»), then
if the supplied value contains more than one item, all items except the first are ignored.

The effect of these rules is that even though the function signature might give the expected type of an
argument as xs:string, say, the value you supply can be a node containing a string, or a node whose
value is untyped (because it has not been validated using a schema), or an xs:anyURI value. With 1.0
compatibility mode on, you can also supply values of other types; for example, an xs: integer or an
xs:date; but when compatibility mode is off, you will need to convert such values to an xs:string
yourself, which you can achieve most simply by calling the string () function.

Code Samples

Most of the examples for this chapter are single XPath expressions. In the download file for this book,
these code snippets are gathered into stylesheets, which in turn are organized according to the name
of the function they exercise. In many cases the examples use no source document, in which case the
stylesheet generally has a single template named main, which should be used as the entry point. In
other cases the source document is generally named source.xml, and it should be used as the principal
input to the stylesheet. Any stylesheets that require a schema-aware processor have names of the form

xxx-sa.xsl.
Function Definitions
The remainder of this chapter gives the definitions of all the functions, in alphabetical order.

abs

The abs () function returns the absolute value of a number. For example, «abs (-3)» returns 3.

Copyright © 2010. John Wiley & Sons, Incorporated. All rights reserved.

Signature
Argument Type Meaning
input Numeric? The supplied number.
Result Numeric? The absolute value of the supplied number. The result has the same type as
the input.
Effect

If the supplied number is positive, then it is returned unchanged. If it is negative, then the result is
«-$Sinput» .

Kay, Mic%a.46LT 2.0 and XPath 2.0 Programmer's Reference, John Wiley & Sons, Incorporated, 2010. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?doclD=514366.
Created from pitt-ebooks on 2018-03-29 08:02:02.

	Top: Table of Contents
	Reference Guides
	Exercises and Tutorials
	XPath Introduction
	XPath functions we use most
	XPath comparison operators
	Regular Expressions Introduction
	Regular Expressions in XPath and XSLT
	XSLT Introduction
	XSLT Attribute Value Templates
	XSLT Identity Transformation: Tutorial
	XSLT Identity Transformation: Exercise
	Modal XSLT
	XSLT Variables
	XSLT Keys
	XSLT Conditionals: xsl:if and xsl:choose
	XSLT: Push and Pull
	xsl:for-each and xsl:value-of
	xsl:for-each, dot, and current()
	xsl:analyze-string (with regex)
	Schematron Introduction
	Validating references with Schematron
	Coding xml:ids and Testing them with Schematron
	XSLT 3.0 and XPath 3.1: New Features
	Regex Exercises on Obdurodon
	Shakespeare’s sonnets
	Blithedale Romance
	The Importance of Being Earnest
	One act play: The Bicyclers

	Regex Exercises on newtFire
	Forster’s Pacific Voyage
	Radio Script: The War of the Worlds

	XPath Exercises on Obdurodon (Bad Hamlet Sequence)
	XPath Ex 1
	XPath Ex 2
	XPath Ex 3
	XPath Ex 4
	XPath Test

	XPath Exercises on newtFire (Pacific Voyage Sequence)
	XPath Ex 1
	XPath Ex 2
	XPath Ex 3
	XPath Ex 4 (strings and dates)

	XQuery Exercises on Obdurodon and newtFire
	XQuery Ex 1 (intro)
	XQuery Ex: Shakespeare (FLWOR)
	XQuery Ex: Digital Mitford (FLWOR)

	XSLT Exercises on Obdurodon
	XSLT Ex 1
	XSLT Ex 2
	XSLT Ex 3
	XSLT Ex 4
	XSLT Ex 5
	XSLT Ex 6
	XSLT Test

	XSLT Exercises on newtFire
	XSLT Ex: Identity Transform
	XSLT Ex: Akira
	XSLT Ex: Digital Mitford Organizations
	XSLT Ex: Dickinson poem collection: part 1 of 2
	XSLT Ex: Dickinson poem collection: part 2 of 2

	Schematron Exercises on Obdurodon
	Schematron Ex 1: Stooges
	Schematron Ex 2: Linguistic corpora

	Schematron Exercises on newtFire
	Schematron Ex 1: Spring Break
	Schematron Ex: Dickinson poems
	Schematron Ex: Digital Mitford Site Index

	Mulberry Guide to oXygen XML Editor (version 20)
	Mulberry Quick Reference Sheets
	XQuery/XPath Functions/Operators
	Regex in XPath, XQuery, XSLT
	ISO Schematron
	XPath
	XQuery
	XSLT 2.0

	Walmsley: XQuery book Ch. 1 and TOC
	Kay: TOC
	Kay: Function LIbrary
	XSLT_2.0_and_XPath_2.0_Programmer's_Reference_----_(A_Word_about_Naming)
	XSLT_2.0_and_XPath_2.0_Programmer's_Reference_----_(Notation)
	XSLT_2.0_and_XPath_2.0_Programmer's_Reference_----_(Code_Samples)

